• Title/Summary/Keyword: Correct classification rate

Search Result 107, Processing Time 0.027 seconds

AN IMPLEMENTATION AND EVALUATION OF RANDOMIZED-ANN SIMULATOR USING A PC CLUSTER

  • Morita, Yoshiharu;Nakagawa, Tohru;Kitagawa, Hajime
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.99-102
    • /
    • 2001
  • We propose a PC cluster using general-purpose microprocessors and a high-speed network for simulating ANN (Artificial Neural Network) processes on Linux OS. We apply this cluster to intelligent information processing such as ANN simulation. The elapsed time for simulating ANNs can be reduced from 7,295 seconds by a PE (Processing Element) to 1,226 seconds by six PEs. The reliability of a pattern-classification using ANNs can be improved by the proposed ANN, Randomized-ANN. In order to generate a Randomized-ANN, we choose three ANNs and combine the output results from three huts by means of logical AND. Results are as follows: The mean correct answer rate is 94.4%, the mean wrong answer rate is only 0.1 %, and the mean unknown answer rate is 5.5 %. We make sure that Randomized-ANN approach reduces the mean wrong answer rate within a tenth part and improves the reliability of Japanese coin classification.

  • PDF

Hangul Character Recognition Using Fuzzy Reasoning:Hangul Character Type Classification by Maximum Run Length Projenction (퍼지추론을 이용한 한글 문자 인식:최대 길이 투영에 의한 한글 문자 유형 분류)

  • 이근수;최형일
    • Korean Journal of Cognitive Science
    • /
    • v.3 no.2
    • /
    • pp.249-270
    • /
    • 1992
  • The purpose of this paper is to classify the types of input characters,printed Hangul characters,using Maximum Run Length Projection(MRLP)that is used to extract features of input character.Because the number of Hangul characters is large and its structure is complex,there exists close similarities among characters.This paper,therefore,tried to increment the type classification rate using fuzzy resoning.The Maximum Run Length Projection is very immune to noise,and also useful to extracting the demanding information efficiently.In a test case with the most frequently use 917 printed Hangul characters,it achieved 98.58%correct classification rate.

A Study on Predicting Bankruptcy Discriminant Model for Small-Sized Venture Firms using Technology Evaluation Data (기술력평가 자료를 이용한 중소벤처기업 파산예측 판별모형에 관한 연구)

  • Sung Oong-Hyun
    • Journal of Korea Technology Innovation Society
    • /
    • v.9 no.2
    • /
    • pp.304-324
    • /
    • 2006
  • There were considerable researches by finance people trying to find out business ratios as predictors of corporate bankruptcy. However, such financial ratios usually lack theoretical justification to predict bankruptcy for technology-oriented small sized venture firms. This study proposes a bankruptcy predictive discriminant model using technology evaluation data instead of financial data, evaluates the model fit by the correct classification rate, cross-validation method and M-P-P method. The results indicate that linear discriminant model was found to be more appropriate model than the logistic discriminant model and 69% of original grouped data were correctly classified while 67% of future data were expected to be classified correctly.

  • PDF

Performance comparison of SVM and neural networks for large-set classification problems (대용량 분류에서 SVM과 신경망의 성능 비교)

  • Lee Jin-Seon;Kim Young-Won;Oh Il-Seok
    • The KIPS Transactions:PartB
    • /
    • v.12B no.1 s.97
    • /
    • pp.25-30
    • /
    • 2005
  • In this paper, we analyzed and compared the performances of modular FFMLP(feedforward multilayer perceptron) and SVUT(Support Vector Machine) for the large-set classification problems. Overall, SVM dominated modular FFMLP in the correct recognition rate and other aspects Additionally, the recognition rate of SVM degraded more slowly than neural network as the number of classes increases. The trend of the recognition rates depending on the rejection rate has been analyzed. The parameter set of SVM(kernel functions and related variables) has been identified for the large-set classification problems.

ST Segment Shape Classification Algorithm for Making Diagnosis of Myocardial Ischemia (심근허혈 진단을 위한 ST세그먼트 형태 분류 알고리즘)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2223-2230
    • /
    • 2011
  • ECG is used to diagnose heart diseases such as myocardial ischemia, arrhythmia and myocardial infarction. Particularly, myocardial ischemia causes the shape change of the ST segment, this change is transient and may occur without symptoms. So it is important to detect the transient change of ST segment through long term monitoring. ST segment classification algorithm for making diagnosis myocardial ischemia is presented in this paper. The first step in the ST segment shape classification process is to detect R wave point and feature points based adaptive threshold and window. And then, the suggested algorithm detects the ST level change, To classify the ST segment shape, the suggested algorithm uses the slope values of the four points between the S and T wave. The ECG data in the European ST-T database were used to verify the performance of the developed algorithm. The best correct rate was 99.40% and the worst correct rate was 68.48%.

Shadow Classification for Detecting Vehicles in a Single Frame (단일 프레임에서 차량 검출을 위한 그림자 분류 기법)

  • Lee, Dae-Ho;Park, Young-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.11
    • /
    • pp.991-1000
    • /
    • 2007
  • A new robust approach to detect vehicles in a single frame of traffic scenes is presented. The method is based on the multi-level shadow classification, which has been shown to have the capability of extracting correct shadow shapes regardless of the operating conditions. The rationale of this classification is supported by the fact that shadow regions underneath vehicles usually exhibit darker gray level regardless of the vehicle brightness and illuminating conditions. Classified shadows provide string clues on the presence of vehicles. Unlike other schemes, neither background nor temporal information is utilized; thereby the performance is robust to the abrupt change of weather and the traffic congestion. By a simple evidential reasoning, the shadow evidences are combined with bright evidences to locate correct position of vehicles. Experimental results show the missing rate ranges form 0.9% to 7.2%, while the false alarm rate is below 4% for six traffic scenes sets under different operating conditions. The processing speed for more than 70 frames per second could be obtained for nominal image size, which makes the real-time implementation of measuring the traffic parameters possible.

Prediction of Correct Answer Rate and Identification of Significant Factors for CSAT English Test Based on Data Mining Techniques (데이터마이닝 기법을 활용한 대학수학능력시험 영어영역 정답률 예측 및 주요 요인 분석)

  • Park, Hee Jin;Jang, Kyoung Ye;Lee, Youn Ho;Kim, Woo Je;Kang, Pil Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.509-520
    • /
    • 2015
  • College Scholastic Ability Test(CSAT) is a primary test to evaluate the study achievement of high-school students and used by most universities for admission decision in South Korea. Because its level of difficulty is a significant issue to both students and universities, the government makes a huge effort to have a consistent difficulty level every year. However, the actual levels of difficulty have significantly fluctuated, which causes many problems with university admission. In this paper, we build two types of data-driven prediction models to predict correct answer rate and to identify significant factors for CSAT English test through accumulated test data of CSAT, unlike traditional methods depending on experts' judgments. Initially, we derive candidate question-specific factors that can influence the correct answer rate, such as the position, EBS-relation, readability, from the annual CSAT practices and CSAT for 10 years. In addition, we drive context-specific factors by employing topic modeling which identify the underlying topics over the text. Then, the correct answer rate is predicted by multiple linear regression and level of difficulty is predicted by classification tree. The experimental results show that 90% of accuracy can be achieved by the level of difficulty (difficult/easy) classification model, whereas the error rate for correct answer rate is below 16%. Points and problem category are found to be critical to predict the correct answer rate. In addition, the correct answer rate is also influenced by some of the topics discovered by topic modeling. Based on our study, it will be possible to predict the range of expected correct answer rate for both question-level and entire test-level, which will help CSAT examiners to control the level of difficulties.

Implementation of Pen-Gesture Recognition System for Multimodal User Interface (멀티모달 사용자 인터페이스를 위한 펜 제스처인식기의 구현)

  • 오준택;이우범;김욱현
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.121-124
    • /
    • 2000
  • In this paper, we propose a pen gesture recognition system for user interface in multimedia terminal which requires fast processing time and high recognition rate. It is realtime and interaction system between graphic and text module. Text editing in recognition system is performed by pen gesture in graphic module or direct editing in text module, and has all 14 editing functions. The pen gesture recognition is performed by searching classification features that extracted from input strokes at pen gesture model. The pen gesture model has been constructed by classification features, ie, cross number, direction change, direction code number, position relation, distance ratio information about defined 15 types. The proposed recognition system has obtained 98% correct recognition rate and 30msec average processing time in a recognition experiment.

  • PDF

An Automatic Segmentation System Based on HMM and Correction Algorithm (HMM 및 보정 알고리즘을 이용한 자동 음성 분할 시스템)

  • Kim, Mu-Jung;Kwon, Chul-Hong
    • Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.265-274
    • /
    • 2002
  • In this paper we propose an automatic segmentation system that outputs the time alignment information of phoneme boundary using Viterbi search with HMM (Hidden Markov Model) and corrects these results by an UVS (unvoiced/voiced/silence) classification algorithm. We selecte a set of 39 monophones and a set of 647 extended phones for HMM models. For the UVS classification we use the feature parameters such as ZCR (Zero Crossing Rate), log energy, spectral distribution. The result of forced alignment using the extended phone set is 11% better than that of the monophone set. The UVS classification algorithm shows high performance to correct the segmentation results.

  • PDF

Alternative accuracy for multiple ROC analysis

  • Hong, Chong Sun;Wu, Zhi Qiang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1521-1530
    • /
    • 2014
  • The ROC analysis is considered for multiple class diagnosis. There exist many criteria to find optimal thresholds and measure the accuracy of diagnostic tests for k dimensional ROC analysis. In this paper, we proposed a diagnostic accuracy measure called the correct classification simple rate, which is defined as the summation of true rates for each classification distribution and expressed as a function of summation of sequential true rates for two consecutive distributions. This measure does not weight accuracy across categories by the category prevalence and is comparable across populations for multiple class diagnosis. It is found that this accuracy measure does not only have a relationship with Kolmogorov - Smirnov statistics, but also can be represented as a linear function of some optimal threshold criteria. With these facts, the suggested measure could be applied to test for comparing multiple distributions.