• Title/Summary/Keyword: Coronal Mass Ejections

Search Result 83, Processing Time 0.029 seconds

PROPAGATION OF CME IN MULTI-SATELLITE OBSERVATIONS (다중 위성 관측을 이용한 CME 전파 과정에 대한 연구)

  • 성숙경;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.307-320
    • /
    • 1998
  • We investigate the propagation of Coronal Mass Ejections(CMEs) near the earth with multi-satellite observations. Among the CMEs observed in the near-earth between Nov. 1994 and Nov. 1997, we select two events of Jan. 6-11,1997 and Nov. 4-7, 1997 which were observed by more than 3 satellites when these satellites were located apart with a sufficient distance from each other. We determine the speed and propagation of the two CMEs by calculating the position of each satellite in various coordinates and the onset time of each event. The results show that the speed of CMEs becomes significantly reduced when the perturbation arrives in the magnetosphere. It is also suggested that the propagation of the CMEs is approximated as the -x direction in GSE coordinates in the near-earth space.

  • PDF

A STUDY OF SMALL FLARES ASSOCIATED WITH PLASMA BLOBS OUTFLOWING ALONG POST-CME RAYS

  • Kim, Yoo Jung;Kwon, Ryun-Young;Chae, Jongchul
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The recent study of Chae et al. (2017) found a one-to-one correspondence between plasma blobs outflowing along a ray formed after a coronal mass ejection (CME) and small X-ray flares. In the present work, we have examined the spatial configuration and the eruption process of the flares that are associated with the blobs by analyzing EUV images and magnetograms taken by the SDO/AIA and HMI. We found that the main flare and the successive small flares took place in a quadrupolar magnetic configuration characterized by predominant magnetic fields of positive polarity, two minor magnetic fragments of negative polarity, and a curved polarity inversion line between them, which suggests that the formation process of the blobs may be similar to that of the parent CME. We also found that the successive flares resulted in a gradual change of the quadrupolar magnetic configuration, and the relevant migration of flaring kernels. The three-dimensional geometry and the property of the current sheet, that is often supposed to be embedded in an observed post-CME ray, seem to keep changing because of mutual feedback between the successive flares and the temporal change of the magnetic field configuration. Our results suggest that the observed post-CME rays may not reflect the characteristics of the current sheet responsible for the impulsive phase of the flare.

INSTALLATION OF THE GEOMAGNETIC FIELD MEASUREMENT NETWORK AND INITIAL MEASUREMENT RESULT (한반도 지자기 연속 관측망 구축 및 초기관측 결과)

  • 최정림;조경석;박재수;이근호;이성환;성숙경;이동훈
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.126-135
    • /
    • 1997
  • We installed a pair of geomagnetic ground station in Ichon branch of Radio Research Laboratory(Ichon station, N37.1447, E127.5509) and Kyunghee University(Yongin station, N37.1419, E127.0454). We have successfully finished test operation, and we are now setting up a data base for the real time monitoring of the geomagnetic field. We are also going to have another geomagnetic station for the southward direction at Chejuisland(Cheju University) in summer of 1997. By that time, we will have a complete set of geomagnetic data base for the near earth solar-terrestrial environment in real time. In this paper, we compare and analyze the results of geomagnetic field observations from our stations, Kakioka observatory, Wind and Geotail satellites when the coronal mass ejections(CME) occurred on Dec. 2, 1996.

  • PDF

Low ionization state plasma in CMEs

  • Lee, Jin-Yi;Raymond, John C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.115.1-115.1
    • /
    • 2012
  • The Ultraviolet Coronagraph Spectrometer on board the Solar and Heliospheric Observatory (SOHO) observes low ionization state coronal mass ejection plasma at ultraviolet wavelengths. The CME plasmas are often detected in O VI ($3{\times}10^5K$), C III ($8{\times}10^4K$), $Ly{\alpha}$, and $Ly{\beta}$. Earlier in situ observations by the Solar Wind Ion Composition Spectrometer (SWICS) on board Advanced Composition Explorer (ACE) have shown mostly high ionization state plasmas in interplanetary coronal mass ejections (ICME) events, which implies that most CME plasma is strongly heated during its expansion in solar corona. In this analysis, we investigate whether the low ionization state CME plasmas observed by UVCS occupy small enough fractions of the CME volume to be consistent with the small fraction of ICMEs measured by ACE that show low ionization plasma, or whether the CME must be further ionized after passing the UVCS slit. To do this, we determine the covering factors of low ionization state plasma for 10 CME events. We find that the low ionization state plasmas in CMEs observed by UVCS show small covering factors. This result shows that the high ionization state ICME plasmas observed by the ACE results from a small filling factor of cool plasma. We also find that the low ionization state plasma volumes in faster CMEs are smaller than in slower CMEs. Most slow CMEs in this analysis are associated with a prominence eruption, while the faster CMEs are associated with X-class flares.

  • PDF

Relations Among Sunspots, CMEs and Geomagnetic Storms in Solar Cycle 23 (태양주기 23의 흑점, CME 및 지자기폭풍의 빈도간 상관관계 연구)

  • Rho, Su-Lyun;Chang, Heon-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.9-24
    • /
    • 2009
  • We compare the relation among the annual distribution of sunspots: coronal mass ejections (CMEs) and geomagnetic storms and North-South asymmetry during solar cycle 23. For this purpose, we calculate correlation coefficients between (i) annual distribution and N-S asymmetry of CMEs - sunspots (ii) distribution of CMEs - occurrence number of geomagnetic storms (iii) distribution of sunspots - occurrence number of geomagnetic storms. We find that (i) the annual distribution of total CMEs has good correlation with distribution of annual average of sunspots but poor correlation with N-S asymmetry of sunspots, N-S asymmetry of CMEs has good correlation with N-S asymmetry of sunspots: (ii) total and N-S asymmetry of CMEs have poor correlation with occurrence number of geomagnetic storms, it's, however, well correlated with the classified groups of CMEs (Ap, Dst and an indices vs. fast CMEs($\upsilon$ > $1000kms^{-1}$), Dst index vs. Halo CMEs), and (iii) sunspot numbers and area are correlated with occurrence number of geomagnetic storms. We conclude that annual distribution of CMEs and sunspots have well correlated with geomagnetic storms, N-S asymmetry of CMEs and sunspots have poor correlated with the geomagnetic storms.

The wave nature of halo coronal mass ejections (파동으로서의 태양 코로나질량방출 현상 연구)

  • Kwon, Ryun-Young;Kim, Rok-Soon;Jang, Soojeong;Lee, Jae-Ok;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.3-49.3
    • /
    • 2019
  • 햇무리(halo) 모양 코로나질량방출(coroanl mass ejection) 현상은 1970년대 후반 처음 발견된 이후, 그 물리적 본질에 대해 많은 논쟁이 있었다. 우주 망원경 SOHO LASCO의 고분해능 관측이후, 햇무리 모양은 시선방향에 나란한 방향으로 팽창하며 진행하는 고깔모양의 자기 구조(cone-shaped magnetic flux rope)가 2차원 관측이미지에 투영된 것으로 해석하는 것이 정설이다. 우리는 이러한 해석이 사실인지 관측을 이용해 검증하고, 타당한 물리적 해석을 찾는다. 이를 위해 STEREO 우주선이 SOHO에서 관측한 태양의 측면을 관측했던 2010년부터 2012년 관측자료를 사용하고, SOHO에서 관측한 햇무리 모양의 코로나질량방출 현상의 측면 모습이 예전의 해석대로 고깔모양을 보여주는지 STEREO 우주선의 관측자료와 비교한다. 우리는 햇무리 모양이 시선방향에 상관없는 이 현상 고유의 모양임을 확인 했으며 극자외선 관측결과와 수치계산 결과와 비교하여 이 햇무리 모양은 파동 현상의 결과임을 알았다. 이는 코로나질량방출 현상과 관련한 해석에 많은 변화가 필요함을 의미한다.

  • PDF

PHYSICAL CHARACTERISTICS OF CORONAL REGION DRIVING OUT THE INTERPLANETARY SHOCK (행성간 충격파 발생 코로나 영역의 물리적 특성)

  • Oh, Su-Yeon;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Using the solar wind data of 2000 observed by ACE, We classified the interplanetary shock on basis of shock driver. We examined the physical properties of shock drivers such as the ratio of charge states(O7/O6) and thermal index$(I_{th})$. Most of 51 interplanetary shocks are driven by interplanetary coronal mass ejections(ICME; magnetic cloud and ejecta) and high speed streams. According to the test of temperature(O7/O6) and $I_{th}$, we found that ICMEs originated from region with hot source in corona.

COMPARISON OF HELICITY SIGNS IN INTERPLANETARY CMES AND THEIR SOLAR SOURCE REGIONS

  • Cho, Kyungsuk;Park, Sunghong;Marubashi, Katsuhide;Gopalswamy, Nat;Akiyama, Sachiko;Yashiro, Seiji;Kim, Roksoon;Lim, Eunkyung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.137.1-137.1
    • /
    • 2012
  • If all Coronal mass ejections (CMEs) have flux ropes, then the CMEs should keep their helicity signs from the Sun to the Earth according to the helicity conservation principle. We select 34 CME-ICME pairs whose source active regions (ARs) have continuous SOHO/MDI magnetogram data covering more than 24 hr without data gap during the passage of the ARs near the solar disk centre. The helicity signs in the ARs are determined by estimation of accumulating amounts of helicity injections through the photospheric surfaces in the entire source ARs. The helicity signs in the ICMEs are estimated by applying the cylinder model developed by Marubashi (2000) to 16 second resolution magnetic field data from the MAG instrument onboard the ACE spacecraft. It is found that 30 out of 34 events (88%) are helicity sign-consistent events, while 4 events (12%) are sign-inconsistent. Through a detailed investigation of the AR solar origins of the 4 exceptional events, we find that those exceptional events can be explained by the local AR helicity sign opposite to that of the entire AR helicity (2000 July 28 ICME), incorrectly reported solar source in CDAW (2005 May 20 ICME), or the helicity sign of the pre-existing coronal magnetic field (2000 October 13 and 2003 November 20 ICMEs). We conclude that the helicity signs of the ICMEs are quite consistent with those of the injected helicities in the AR regions where CMEs were erupted.

  • PDF

Algorithm for Detection of Solar Filaments in EUV

  • Joshi, Anand D.;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.66.2-66.2
    • /
    • 2015
  • In today's age when telecommunications using satellite has become part of our daily lives, one has to be employ preventive measures to avert any possible danger, of which solar activity is the major cause. Coronal mass ejections (CMEs) heading towards the Earth can lead to disturbances in the Earth's magnetosphere, if their magnetic field is oriented southward. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Monitoring of solar filaments in this case becomes very very crucial, as their eruption is associated with most of the CMEs. Also, filaments show activation up to a few hours prior to launch of a CME and thus can provide advance warning. In this study, we present an algorithm for the detection of solar filaments seen in the extreme ultraviolet (EUV) from Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). Various morphological operations are employed to identify and extract the filaments. These filaments are then tracked in order to determine their size and location continuously.

  • PDF

Connection of Blobs along Post-CME Ray and EUV Flares

  • Kim, Yoojung;Chae, Jongchul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.82.1-82.1
    • /
    • 2017
  • After a coronal mass ejection occur, plasma blobs are often observed along the post-CME ray. Searching for features related to the plasma blobs would be important in understanding their origin. We investigated the morphology of solar flares at EUV wavelengths, around the estimated times when blobs were formed. We focused on three events - 2013 September 21 and 22, 2015 March 7 and 8, and 2017 July 13 and 14 - observed by Atmospheric Imaging Assembly (AIA) aboard Solar Dynamic Observatory (SDO). Around the blob ejection times on 2013 September 21 and 22 and 2017 July 13 and14, we found regions with recurrent events of pronounced flux increase in EUV images. Around those of 2015 March 7 and 8, however, we could not observe such recurrent flux increase. This illustrates that even though blob ejections along different post-CME rays look similar in the high corona, the assocated features in the low corona may differ. We conclude that magnetic morphology and CME triggering process should be carefully examined in order to classify plasma blobs by their nature.

  • PDF