• Title/Summary/Keyword: Corona Wire Electrode

Search Result 26, Processing Time 0.027 seconds

Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries (핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구)

  • Cheong Seongir;Lee Jaekeun;Chung Dongkyu;Ahn Youngchull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

Characteristics of a Corona between a Wiring Clamp(Dead End Clamp) and a Porcelain Insulator Used in a 154[kV] Power Receptacle

  • Han, Un-Ki;Kim, Jong-Min;Bang, Sun-Bae;Kim, Han-Sang;Choi, Hyeong-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.57-63
    • /
    • 2007
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154[kV] dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in 154[kV] power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method(FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

Investigation on the Electrical Discharge Characteristics of a Unipolar Corona-Wire Aerosol Charger

  • Intra, Panich;Yawootti, Artit;Vinitketkumnuen, Usanee;Tippayawong, Nakorn
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.556-562
    • /
    • 2011
  • In the present study, a simple corona-wire charger for unipolar diffusion charging of aerosol particles is designed, constructed, and characterized. Experimental characterizations of the electrostatic discharge in terms of current-voltage relationships of positive and negative coronas of the corona-wire charger are also presented and discussed. The charging current and ion concentration in the charging zone increased monotonically with corona voltage. The negative corona showed higher current than the positive corona. At the same corona voltages, the current in the discharge zone is about 600 times larger than the charging current. The ion number concentrations ranged within approximately $5.0{\times}10^{10}$ to $1.24{\times}10^{16}$ and $4.5{\times}10^{12}$ to $2{\times}10^{16}$ ions/$m^3$ in the discharge and charging zones, respectively. A numerical model is used to predict the behavior of the electric potential lines. Numerical results of ion penetration through the inner electrode are in good agreement with the experimental results.

NUMERICAL MODELING OF WIRE ELECTROHYDRODYNAMIC FLOW IN A WIRE-PLATE ESP

  • Chun, Young-Nam
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.164-171
    • /
    • 2006
  • Numerical modeling of the flow velocity fields for the near corona wire electrohydrodynamic (EHD) flow was conducted. The steady, two-dimensional momentum equations have been computed for a wire-plate type electrostatic precipitator (ESP). The equations were solved in the conservative finite-difference form on a fine uniform rectilinear grid of sufficient resolution to accurately capture the momentum boundary layers. The numerical procedure for the differential equations was used by SIMPLEST algorithm. The Phoenics (Version 3.5.1) CFD code, coupled with Poisson's electric field, ion transport equations and the momentum equation with electric body force were used for the numerical simulation and the Chen-Kim ${\kappa}-{\varepsilon}$ turbulent model numerical results that an EHD secondary flow was clearly visible in the downstream regions of the corona wire despite the low Reynolds number for the electrode ($Re_{cw}=12.4$). Secondary flow vortices caused by the EHD increases with increasing discharge current or EHD number, hence pressure drop of ESP increases.

A Study on the Collection Characteristics of Submicron Particles in an Electrostatic Precipitator - II. Collection Efficiency Characteristics (전기 집진기에서의 Submicron 입자의 집진 특성에 관한 연구-II. 집진 효율 특성)

  • 김용진;여석준;유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.579-587
    • /
    • 2001
  • This study investigates particle collection characteristics of a cylindrical electrostatic precipitator. Experimental work has been made for the submicron particles. The effects of polarity of discharge electrode wire, particle diameter, gas velocity, gas temperature, and specific corona power on the particle collection efficiency are investigated. The efficiency of negative corona is higher than that of positive corona. as the particle diameter increases, the efficiency is decreased when the diameter is in the range of 0.02-0.6 micron, but is increased for the nanometer particles with diameter smaller than 0.02 micron. The efficiency is increased with increase of specific corona power. As the gas temperature increases, overall collection efficiency is increased for a negative corona, but is deceased for a positive corona.

  • PDF

Experimental Study on the Discharge Electrode of A Two-Stage Electrostatic Air Cleaner (2단 평행판 전기집진기의 방전부 특성 실험)

  • Kim, I.S.;Lee, J.O.;Kim, Y.J.;Choi, H.O.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 1993
  • The two-stage electrostatic air cleaner is a particle control device that uses electrical forces to move particles in the flowing gas stream onto collector plates. Despite a general understanding of electrostatic air cleaner operation and their successful use in industry, many questions regarding flow, electric fields and particle collection have remained unanswered. In this paper, an experimental investigation for designing the discharge electrode, including ionizer wire diameter, plate length and wire-to-plate spacing, is carried out. The electrical conditions, namely the electric field intensity, the space current and the particle charge intensity, in wire-plate electrostatic air cleaner are reported and examined.

  • PDF

A Study on the Collection Characteristics of Submicron Particles in an Electrostatic Precipitator - I. Electrical Characteristics (전기 집진기에서의 Submicron 입자의 집진 특성에 관한 연구-I. 전기적 특성)

  • 김용진;황태근;유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.572-578
    • /
    • 2001
  • This study conducts a laboratory measurement on a cylindrical electrostatic precipitator(ESP) with a 30mm-diameter cylinder. Several kinds of test aerosols are generated with an atomizer and a diffusion dryer. The effects of applied voltage, flow state, gas velocity, and gas temperature on the electrical characteristics of the precipitator and onset of corona are experimentally investigated. The corona onset voltage is decreased, as diameter of discharge electrode wire becomes small or temperature of the precipitator increases. As the fluid velocity or particle load in the precipitator increases, the corona current is decreased.

  • PDF

Preventing Method against the Occurrence of a Corona between a Dead End clamp and a Porcelain Insulator Used in 154kV Substation

  • Han, Woon-Ki;Choi, Jong-Soo;Lee, Jun;Kim, Jae-Chul
    • International Journal of Safety
    • /
    • v.6 no.2
    • /
    • pp.22-26
    • /
    • 2007
  • An episode of corona is a heterogeneity-caused electric discharge that occurs when electric fields are formed layer on layer and concentrated on an electrode. Electric wires built at the tip of 154kV private facilities use dead end clamp spawns corona from homogeneity caused by field concentration. Corona induces power loss, noise, insulator failure and more. In this research, we've studied the characteristics of coronas that take place in porcelain insulators and terminal electric wires of supporting hard wares (dead end clamp) that are set up as spares in the 154kV private facilities use hydroelectricity installations to support electric wires. Corona, which cannot be identified by regular methods, was measured utilizing UV image camera. As the result of measuring corona via UV image camera, we've confirmed that the depletion of insulators was accelerated following the wire end treatment method and validated the stress intensity of insulators at various lengths of bare wires caused by electric fields via FEMLAB. We have also proposed a new model for relieving homogeneity-caused field concentration, and after analyzing the proposed model via FEMLAB, we've confirmed that the concentration of field distribution was indeed reduced. Such results are exploited in installation of private facilities use equipments, maintenance of insulators and hard wares as well as safety enhancement, and are anticipated to be effectively utilized in corona prevention measures.

Application of Gas to Particle Conversion Reaction to increase the DeSOx/DeNOx Efficiency under Pulsed Corona Discharge (DeSOx/DeNOx 효율 개선을 위한 펄스 코로나 방전하에서 기체미립자 전환반응의 적용)

  • Choi, Yu-ri;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.249-258
    • /
    • 1998
  • In this paper, we investigated the post-combustion removal of nitrogen oxide($NO_x$) and sulfur oxide($SO_x$) which is based on the gas to particle conversion process by the pulsed corona discharge. Under normal pressure, the pulsed corona discharge produces the energetic free electrons which dissociate gas molecules to form the active radicals. These radicals cause the chemical reactions that convert $SO_x$ and $NO_x$ into acid mists and these mists react with $NH_3$ to form solid particles. Those particles can be removed from the gas stream by conventional devices such as electrostatic precipitator or bag filter. The reactor geometry was coaxial with an inner wire discharge electrode and an outer ground electrode wrapped on a glass tube. The simulated flue gas with $SO_x$ and $NO_x$ was used in the experiment. The corona discharge reactor was more efficient in removing $SO_x$ and $NO_x$ by adding $NH_3$ and $H_2O$ in the gas stream. We also measured the removal efficiency of $SO_x$ and $NO_x$ in a cylinder type corona discharge reactor and obtained more than 90 % of removal efficiency in these experimental conditions. The effects of process variables such as the inlet concentrations of $SO_x$, $NH_3$ and $H_2O$, residence time, pulse frequencies and applied voltages were investigated.

  • PDF

Decomposition of Odorous Gases in a Pilot-scale Nonthermal Plasma Reactor

  • Hwang, Yoon-Ho;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.E2
    • /
    • pp.57-65
    • /
    • 2005
  • An experimental study was performed on the decomposition of gaseous ammonia and two selected volatile organic compounds (VOCs: toluene and acetone) in a combined nonthermal plasma reactor with corona and glow discharges. A lab pilot scale reactor (206 liter) equipped with a high electric power pack was used to determine the decomposition efficiency in relation with the inlet concentration and applied voltage. Three different types of discharging electrode such as wired rack, wire strings for corona discharge, and thin plate for glow discharge were put in order in the reactor. While decomposition of ammonia decreased with an increase in the initial concentration, acetone showed an opposite result. In the case of toluene however no explicit tendency was found in toluene and aceton. Negative discharge resulted in high decomposition efficiency than the positive one for all gases. A better removal of gas phase element could be achieved when fume dust were present simultaneously.