• Title/Summary/Keyword: Corona Camera

Search Result 32, Processing Time 0.021 seconds

An Operating Software Development of A Prototype Coronagraph for The Total Solar Eclipse in 2017

  • Park, Jongyeob;Choi, Seonghwan;Kim, Jihun;Jang, Be-ho;Bong, Su-Chan;Baek, Ji-Hye;Yang, Heesu;Park, Young-Deuk;Cho, Kyung-Suk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.85.1-85.1
    • /
    • 2017
  • We develop a coronagraph to measure the coronal electron density, temperature, and speed by observing the linearly polarized brightness of solar corona with 4 different wavelengths. Through the total solar eclipse on 21 August 2017, we test an operating software of a prototype coronagraph working with two sub-systems of two motorized filter wheels and a CCD camera that are controlled by a portable embedded computer. A Core Flight System (CFS) is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. We use the CFS software framework to develop the operating software that can control the two sub-systems asynchronously in an observation scenario and communicate with a remote computer about commands, housekeeping data through Ethernet. The software works successfully and obtains about 160 images of 12 filter sets (4 bandpass filters and 3 polarization angles) during the total phase of the total solar eclipse. For the future, we can improve the software reliability by testing the software with a sufficient number of test cases using a testing framework COSMOS. The software will be integrated into the coronagraph for balloon-borne experiments in 2019.

  • PDF

Development of the Command and Data Handling System and Flight Software of BITSE

  • Park, Jongyeob;Baek, Ji-Hye;Jang, Bi-ho;Choi, Seonghwan;Kim, Jihun;Yang, Heesu;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Swinski, Joseph-Paul A.;Nguyen, Hanson;Newmark, Jeffrey S.;Gopalswamy, Natchumuthuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.57.4-57.4
    • /
    • 2019
  • BITSE is a project of balloon-borne experiments for a next-generation solar coronagraph developed by a collaboration with KASI and NASA. The coronagraph is built to observe the linearly polarized brightness of solar corona with a polarization camera, a filter wheel, and an aperture door. For the observation, the coronagraph is supported by the power distribution unit (PDU), a pointing system WASP (Wallops Arc-Second Pointer), telemetry & telecommand system SIP (Support Instrument Package) which are developed at NASA's Goddard Space Flight Center, Wallops Flight Facility, and Columbia Scientific Balloon Facility. The BITSE Command and Data Handling (C&DH) system used a cost-off-the-shelf electronics to process all data sent and received by the coronagraph, including the support system operation by RS232/422, USB3, Ethernet, and digital and analog signals. The flight software is developed using the core Flight System (cFS) which is a reusable software framework and set of reusable software applications which take advantage of a rich heritage of successful space mission of NASA. The flight software can process encoding and decoding data, control the subsystems, and provide observation autonomy. We developed a python-based testing framework to improve software reliability. The flight software development is one of the crucial contributions of KASI and an important milestone for the next project which is developing a solar coronagraph to be installed at International Space Station.

  • PDF