• Title/Summary/Keyword: Corner tool-path

Search Result 15, Processing Time 0.02 seconds

Evaluating Stability of a Transient Cut during Endmilling using the Dynamic Cutting Force Model

  • Seokjae Kang;Cho, Dong-Woo;Chong K. Chun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.2
    • /
    • pp.67-75
    • /
    • 2000
  • virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system the consists of structural and cutting dynamic. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without run out and penetration effects. This study considers both tool run out and penetration effects, using experimental modal analysis, to obtain predictions that are more accurate. The machining stability during a corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

Deformation Characteristics in Sheet Metal Forming with Small Ball (소형 구를 이용한 박판 성형에서의 변형특성)

  • 심명섭;박종진
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.59-66
    • /
    • 2001
  • Recently, the technology of incremental forming for sheet metal components has drawn attention for small-batch productions. In the present investigation, a forming tool containing a freely-rotating ball was developed and applied to forming of various shapes with full annealed Al 1050 sheet. Deformation characteristics occurring during forming with this tool was examined through FEM analysis and grid measurement. It was found that deformation modes developed along a straight path and around a corner are close to those of plane-strain and equi-biaxial stretching, respectively, and that cracks occur mostly at corners for the same depth of tool. FEM analysis was successfully applied to this special type of forming process and provided comparable results to the measurements from experiment.

  • PDF

Study on the Appearance Spring back of Spinning Process (스피닝 공정에서의 스프링백 현상에 관한 연구)

  • 박중언;이우영;최석우;나경환;김승수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.837-841
    • /
    • 2000
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method of producing parts than the other sheet metal forming process such as stamping or deep drawing. It is a point deformation process where a metal disc. cylinderical workpiece. or preform in contact with a rotating chuck is plastically deformed by axial or axial-radial Motions of a tool or roller. in this study the variation of spring back with respect to various forming roller corner radius(Rr) and angle of roller holder($\alpha$) is investigated. Good as a result will help to get more precise shape by control of spring back.

  • PDF

Efficient 5-axis Machining of a Propeller using Geometric Properties (기하학적 특성을 이용한 프로펠러의 효율적인 5축가공)

  • Hwang, Jong-Dae;Yun, Il-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.71-78
    • /
    • 2020
  • The rotary feed axes of a 5-axis machine tool can increase the freedom of the tool posture, while reducing feed speed and rigidity. In addition, as a ball-end mill is inevitably used during machining by rotational feed, the step-over length is reduced compared to the flat-end mill, thereby reducing the material removal rate. Therefore, this study attempts to improve the material removal rate, feed speed, and machining stability using the corner radius flat-end mill and a fixed controlled machining method for the rotary feed axes during roughing. In addition, the tapered ball-end mill and simultaneously controlled machining method for the rotary feed axes were used for finishing to improve the propeller's 5-axis machining efficiency by enhancing the surface quality. In order to create the tool path effectively and easily, we propose a specific approach for using the propeller's geometric properties and evaluate the effectiveness of the proposed method by comparing it with the method of the dedicated module.

Numerical and Experimental Investigation on the Tube Forming in the Radial-Forward Extrusion (레이디얼-전방압출에서 튜브성형에 관한 해석 및 실험)

  • 고병두;장동환;최호준;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.168-175
    • /
    • 2003
  • In this paper, the tube forming by radial-forward extrusion is analyzed by numerical simulation and experiments. The paper discusses the effects of process variables such as gap height, relative gap width and die corner radius on tube forming. The influence of deformation patterns of flange in radial extrusion on forward extrusion for tube forming is investigated and summarized in terms of the maximum forming force and hardness variations along the extrusion path. Furthermore the external defects are shown experimentally during the forming operation. Based on finite element analysis in conjunction with experimental test in Al alloy, analysis is performed for important parameter combination in order to reduce forming defects. Eventually, the process parameters for safe forming are suggested in order to reduce the forming defects.