• Title/Summary/Keyword: Corner section

Search Result 128, Processing Time 0.023 seconds

A study on the hexagonal drawing dies for the high strength materials (고강도 육각 이형 인발 다이스에 관한 연구)

  • 권혁홍;유동진;이정로;이원복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1410-1413
    • /
    • 2003
  • Drawing is a basic plastic deformation method and productive manufacturing process make wire. rod and variety section geometry bar. Study for the rod drawing process of rod was researched long littles. but non-axisymmetric drawing process is weak. So metal flow is very irregular in non-axisymmetric drawing process and difficult to define about material deformation generally. In this paper, to solve material deformation, use finite element method and then define suitable shape for rod to hexagonal drawing dies. And research corner filling rate and surface roughness for the high strength steel hexagonal bar produced defined dies.

  • PDF

The Experimental Study of EHD Printing for Different Nozzle Shapes (노즐 형상에 따른 전기수력학 프린팅의 실험적 연구)

  • Kim, Ji-Young;Nguyen, Vu Dat;Byun, Do-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.2
    • /
    • pp.48-53
    • /
    • 2011
  • The shape of nozzle cross-section plays an important role in stabilizing electrospray jet. The angle of contact line is governed based on the famous Young-Laplace equation. Compared to a round nozzle that has a constant curvature along the orifice, the square nozzle has four square corner edges and four straight edges that hold the meniscus in a different manner and is of interest in this study. By utilizing both square and round capillary nozzle, we examine the effect of nozzle shape in electrohydrodynamic jetting. The ejections were recorded with a high speed camera and analyzed to examine the jetting repeatability based on dynamic movement of meniscus. The result suggests that if the corner edges are not sharp, then its effect on repeatability is also limited.

The Effects of the Process and Die Design for Precision Forging of Al Alloys (AI 합금 정밀단조를 위한 금형설계 및 공정조건의 영향)

  • Lee, Young-Seon;Lee, Jung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.11
    • /
    • pp.166-173
    • /
    • 1999
  • Al forged parts are many cases with rib-web section which is difficult to manufacture precisely. Therefore, process conditions must be optimized for precision forging of Al alloys. In this study, various process parameters such as die design, lubricant, ram speed, forging temperature have been investigated using the experiment, upper bound theory and F.E.M. simulation to develop the precision forging technology for rib-web shape component. When lubricant is applied to both material and die, shear friction factor is 0.1 which shows best effect of lubricant. It is specific corner radius of die that minimized forging load regarding process conditions, especially according to the ratio of the width of rib and web. In conclusion, optimum corner radius is 2~3mm when the width of rib and web is 3mm and 20mm respectively.

  • PDF

Racking shear resistance of steel frames with corner connected precast concrete infill panels

  • Hoenderkamp, J.C.D.;Snijder, H.H.;Hofmeyer, H.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1403-1419
    • /
    • 2015
  • When precast concrete infill panels are connected to steel frames at discrete locations, interaction at the structural interface is neither complete nor absent. The contribution of precast concrete infill panels to the lateral stiffness and strength of steel frames can be significant depending on the quality, quantity and location of the discrete interface connections. This paper presents preliminary experimental and finite element results of an investigation into the composite behaviour of a square steel frame with a precast concrete infill panel subject to lateral loading. The panel is connected at the corners to the ends of the top and bottom beams. The Frame-to-Panel-Connection, FPC4 between steel beam and concrete panel consists of two parts. A T-section with five achor bars welded to the top of the flange is cast in at the panel corner at a forty five degree angle. The triangularly shaped web of the T-section is reinforced against local buckling with a stiffener plate. The second part consists of a triangular gusset plate which is welded to the beam flange. Two bolts acting in shear connect the gusset plate to the web of the T-section. This way the connection can act in tension or compression. Experimental pull-out tests on individual connections allowed their load deflection characteristics to be established. A full scale experiment was performed on a one-storey one-bay 3 by 3 m infilled frame structure which was horizontally loaded at the top. With the characteristics of the frame-to-panel connections obtained from the experiments on individual connections, finite element analyses were performed on the infilled frame structures taking geometric and material non-linear behaviour of the structural components into account. The finite element model yields reasonably accurate results. This allows the model to be used for further parametric studies.

Analysis for the RCS of a Trihedral Corner Reflector with Consideration of the Effect of Front Surface (지표면 영향을 고려한 삼각 전파 반사기의 RCS 분석)

  • Shin, Jong-Chul;Kweon, Soon-Koo;Oh, Yi-Sok;Kim, Se-Young;Jeon, Byeong-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.723-730
    • /
    • 2012
  • The radar cross section(RCS) of a trihedral corner reflector(TCR) should be accurately computed when it is used as an external calibration target for a satellite synthetic aperture radar(SAR) calibration campaign. This paper presents the RCS analysis on a trihedral corner reflector which is installed on a calibration site, using the wave reflection from the rough surface and the wave diffraction from the TCR edges. The results in this paper show quantitatively the effect of the front surface on the RCS of a TCR. The difference of the RCS between a TCR in air and a TCR on a ground surface is computed by including the interaction term which consists of the edge diffraction from the TCR edges and the surface reflection from the front rough surface. The reflection coefficient of a randomly rough surface is a function of the surface roughness and dielectric constant of the surface. The RCS of $10{\lambda}$ size TCR on a ground is 0.46 dB higher than TCR in air at 9.65 GHz, and this can reach at maximum 1.55 dB depending on a surface condition and TCR size. The effect of the front surface on the RCS of a TCR increases, as the surface roughness decreases, the soil moisture increases, and the size of TCR in wavelength decreases.

Prediction of Initial Design Parameter of Rectangular Shaped Mold Spring Using Finite Element Method (유한요소법을 이용한 사각단면 금형스프링의 초기 설계변수 예측)

  • Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.450-455
    • /
    • 2011
  • This paper presents an inverse design methodology for the cross section geometry of mold spring with a rectangular cross section as the starting material for a coiling process. The cross-sections of mold springs are universally rectangular, as the parallel sides minimize the possibility of failure under high service loads. Pre-coiled wires are initially designed to have a trapezoidal cross section, which becomes a rectangle by the coiling process. This study demonstrates a numerical exercise to predict changes in the sectional geometry in spring manufacture and to obtain the initial cross section which becomes the exact rectangle desired from the manufacturing process. Finite element analysis was carried out to calculate the sectional changes for various mold springs. Geometrical parameters were the widths at inner and outer radii, the inner and the outer corner radii, and the height. A partial least square regression analysis was carried out to find the main contributing factors for deciding initial design values. The height and the width mainly affected various initial parameters. The initial width at the inner radius was mostly affected by various specification parameters.

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.

A Fundamental Study on the Underground Excavation using by Slit Method(I) (Slit공법을 이용한 지하공동 굴착에 관한 기초적 연구(I))

  • 이희성;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.93-100
    • /
    • 2000
  • In this study, we used photoelastic coating method which is a kind of model test for examining the stress condition of rock masses around underground structures. Using this method, we could know adaptability and usefulness of photoelastic coating method for various shape of tunnel models. And, in spite of higher cross section efficiency, square shape model showed unstable status because of high stress concentration. So, we cut the slits at the each corner of tunnel, and we could make more stable stress condition by means of moving high stress concentration to rock mass.

  • PDF

A Study on the Rotary Tidal Current in the East China Sea (동지나해 어장의 회전 조류에 관하여)

  • 김진건
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 1986
  • Even though it is well known that the tidal current in the East China Sea rotates clockwise, few report can be found about the precise pattern of it. To furnish some information available for the stow net fishermen, the author carried out the observation over 235 semidiurnal tidal cycle to investigate the pattern of the set and the rate of tidal current in the Korean fishing section 250 and 494, by reading the current meter and by tracing the corner reflectors with radar onboard the anchored obsen'ation vessel, from May 12, 1984 through February 27, 1986. The results obtained are as follows: 1. The mean semidiurnal tidal cycle was 12 h 20 m during spring tide, and 12 h 30 m during neap tide. 2. The mean interval from the calculated time of high water until the current began to set north was 2 h 30 m and 2 h 15 m in the fishing section 250 and 494 respectively, and the mean interval from the time of low water current began to set south was about 2 h 0 m in both sections. 3. In comparison of the occupied times to vary the set from one of 8 principal bearing points to the neighboring one, the shortest was while the set varied from N to NE and S to SW in the section 250 and 494 respectively. Contrary the longest was while the set varied from SE to S and from W to NW in the section 250 and 494 respectively. 4. In comparison of the rate while the set varied from one of 8 principal bearing points to the neighboring one, the fastest was while the set varied from SE to Sand NW to N in the section 250, and E to SE and W to NW in the section 494. Contrary the slowest was while the current set to NE and S W in the section 250, and N, NE and S W in the section 494.

  • PDF

Design of Passive-Type Radar Reflector

  • Yim, Jeong-Bin;Kim, Woo-Suk
    • Journal of Navigation and Port Research
    • /
    • v.27 no.3
    • /
    • pp.267-272
    • /
    • 2003
  • This paper describes design method of Passive-type Radar Reflector (PRR) which is to provide the requirement of newly revised 2000 SOLAS regulations on the Radar Reflector. The main target of this work is to find the optimum shape of a radar target having large Radar Cross Section (RCS). Through the RCS analysis based on the theoretical approach, two kinds of PRR models, RRR-F model for use in fisheries and PRR-S model for use in small sized ship, are designed and discussed their RCS performance. RCS measurement tests for the various sized samples are carried out in an anechoic chamber. As evaluation results it was clearly shown that the conventional sphere-type shows optimum shape in case of PRR-S, while the cylinder-type which consists of large sized corner clusters or zig-zag flat plats gives best performance in case of PRR-F.