• 제목/요약/키워드: Corner flow

검색결과 239건 처리시간 0.026초

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

Numerical analysis of oscillating square cylinder with corner radius

  • Tong, J.F.;Sohn, C.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.316-320
    • /
    • 2008
  • In this paper, the near wake of stationary and transversely oscillating square section cylinders with different corner radii are studied by numerical method to investigate the influence of corner radius. Six models R/D=0,0.1,0.2,0.3,0.4,0.5 (R is the corner radius and D is the characteristic dimension of the body) were studied. It was found that the corner radius of square cylinder significantly influences the flow features around the body both in stationary and oscillating conditions. Results indicate that, as R/D ratio increases, the Strouhal number increases and the separation point decrease for the stationary and oscillating cases.

  • PDF

Experimental study on Re number effects on aerodynamic characteristics of 2D square prisms with corner modifications

  • Wang, Xinrong;Gu, Ming
    • Wind and Structures
    • /
    • 제22권5호
    • /
    • pp.573-594
    • /
    • 2016
  • Simultaneous pressure measurements on 2D square prisms with various corner modifications were performed in uniform flow with low turbulence level, and the testing Reynolds numbers varied from $1.0{\times}10^5$ to $4.8{\times}10^5$. Experimental models were a square prism, three chamfered-corner square prisms (B/D=5%, 10%, and 15%, where B is the chamfered corner dimension and D is the cross-sectional dimension), and six rounded-corner square prisms (R/D =5%, 10%, 15%, 20%, 30%, and 40%, where R is the corner radius). Experimental results of drag coefficients, wind pressure distributions, power spectra of aerodynamic force coefficients, and Strouhal numbers are presented. Ten models are divided into various categories according to the variations of mean drag coefficients with Reynolds number. The mean drag coefficients of models with $B/D{\leq}15%$ and $R/D{\leq}15%$ are unaffected by the Reynolds number. On the contrary, the mean drag coefficients of models with R/D=20%, 30%, and 40% are obviously dependent on Reynolds number. Wind pressure distributions around each model are analyzed according to the categorized results.The influence mechanisms of corner modifications on the aerodynamic characteristics of the square prism are revealed from the perspective of flow around the model, which can be obtained by analyzing the local pressures acting on the model surface.

Vortices within a Three-Dimensional Separation in an Axial Flow Stator of a Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권2호
    • /
    • pp.262-270
    • /
    • 2011
  • Experimental and numerical investigations were conducted for an internal flow in an axial flow stator of a diagonal flow fan. A corner separation near the hub surface and the suction surface of a stator blade was focused on, and further, three-dimensional vortices in separated flow were investigated by the numerical analysis. At low flow rate of 80% of the design flow rate, a corner separation of the stator between the suction surface and the hub surface can be found in both experimental and calculated results. Separation vortices are observed in the limiting streamline patterns both on the blade suction and on the hub surfaces at 80% of the design flow rate in the calculated results. It also can be observed in the streamline pattern that both vortices from the blade suction surface and from the hub surface keep vortex structures up to far locations from these wall surfaces. An attempt to explain the vortices within a three-dimensional separation is introduced by using vortex filaments.

입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (I) - 허브 코너 실속 및 익단 누설 유동 - (Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor (I) - Hub Corner Stall and Tip Leakage Flow -)

  • 최민석;박준영;백제현
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.948-955
    • /
    • 2005
  • A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow in a low-speed axial compressor operating at the design condition($\phi=85\%$) and near stall condition($\phi=65\%$). At the design condition, the flows in the axial compressor show, independent of the inlet boundary layer thickness, similar characteristics such as the pressure distribution, size of the hub comer-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. However, as the load is increased, the hub corner-stall grows to make a large separation region at the junction of the hub and suction surface for the inlet condition with thick boundary layers at the hub and casing. Moreover, the tip leakage flow is more vortical than that observed in case of the thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is abruptly turned into the downstream. For the inlet condition with thin boundary layers, the hub corner-stall is diminished so it is indistinguishable from the wake. The tip leakage flow leans to the leading edge more than at the design condition but has no critical point. In addition to these, the severe reverse flow, induced by both boundary layer on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in heavy loss.

$180^{\circ}$ 곡관부를 가지는 회전 덕트에서의 열/물질전달 특성 (Heat/Mass Transfer Characteristics in A Rotating Duct with $180^{\circ}$ Turn)

  • 원정호;이세영;조형희
    • 대한기계학회논문집B
    • /
    • 제25권3호
    • /
    • pp.405-413
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside a rotating two-pass rectangular duct. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The objective of this study is to determine the effects of turning geometry with rotation for 0.0$\leq$Ro$\leq$0.24. The results reveal that the sharp-turn corner has the larger pressure drop and lower heat transfer in the post-turn region than those of the round-turn corner. The strong secondary flow enhances heat transfer for the round-turn corner. Coriolis force induced by the rotation pushes the high momentum core flow toward the trailing wall in the first passage with radially outward flow and toward the leading wall in the second passage with radially inward flow. Consequently, the high heat transfer rates are generated on the trailing surface and the leading surface in the first and second passage, respectively. However, the strong secondary flow due to the turning dominates the flow pattern in the second passage, thus the heat transfer differences between the leading and trailing surfaces are small with the rotation.

수조 성능 향상을 위한 공동 수조 내 방향 전환부 설계 (First Elbow Design for the Improvement of Tunnel Performance)

  • 부경태;신수철
    • 대한조선학회논문집
    • /
    • 제41권4호
    • /
    • pp.9-16
    • /
    • 2004
  • In the cavitation tunnel, the first corner playes role for the flow direction to execute 90-degree turn. So, energy loss is serious, and the cavitation phenomena well occur in the guide vane surface. In this paper, the flow in the first corner was numerically calculated. From the calculation result, cavitation phenomena mainly occurred in the suction side of the last guide vane and vicinity that vane and tunnel wall adjoin each other. And bubbles occurred from all guide vanes if the flow velocity in the test section reaches the any critical value. We could analogize with our experience in the water tunnel that bubbles that occurred in time not vanish, and become miniature in the flow although the pressure recover. So, they circulate with flow in the tunnel, and come into view in the test section. Therefore, first corner must be designed for bubbles not to appear in the test section according to the flow condition like velocity and pressure demanded by the experiment. We analyzed flow in case that the first elbow configuration was redesigned and some of the existing guides vanes were eliminated. And we presented that first elbow can be easely designed for the improvement of tunnel performance through the computational analysis.

Oscillatory Thermocapillary Flow in Cylindrical Columns of High Prand시 Number Fluids

  • Lee, Kyu-Jung;Yasuhiro Kamotani;Simon Ostrach
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.764-775
    • /
    • 2001
  • Oscillartory thermocapillary flow of high Prandtl number fluids in the half-zone configuration is investigated. Based on experimental observations, one oscillation cycle consists of an active period where the surface flow is strong and the hot corner region is extended and a slow period where the opposite occurs. It is found that during oscillations the deformation of free surface plays an important role and a surface deformation parameter S correlates the experimental data well on the onset of oscillations. A scaling analysis is performed to analyze the basic steady flow in the parametric ranges of previous ground-based experiments and shows that the flow is viscous dominant and is mainly driven in the hot corner. The predicted scaling laws agree well with the numerical results. It is postulated that the oscillations are caused by a time lag between the surface and return flows. A deformation parameter S represents the response time of the return flow to the surface flow.

  • PDF

Effects of corner cuts and angles of attack on the Strouhal number of rectangular cylinders

  • Choi, Chang-Koon;Kwon, Dae-Kun
    • Wind and Structures
    • /
    • 제6권2호
    • /
    • pp.127-140
    • /
    • 2003
  • An investigation into the effect of corner cuts on the Strouhal number of rectangular cylinders with various dimensional ratios and various angles of attack is described. The Strouhal number given as a function of corner cut size is obtained directly from the aerodynamic behavior of the body in a uniform flow through a series of wind-induced vibration tests. For a quick verification of the validity of the Strouhal numbers obtained in this way, they are compared with the approximated the Strouhal numbers based on Shiraishi's early research. The test results show that the Strouhal number of the model with various corner cuts has a fluctuating trend as the angle of attack changes. For each cutting ratio as the angle of attack increases at each cutting ratio above $15^{\circ}$, the Strouhal number decreases gradually, and these trends are more evident for larger corner cut sizes. However, a certain corner cut size which is effective in reducing the wind-induced vibration can be identified by larger Strouhal numbers than those of other corner cut sizes. Three distinct characteristics of Strouhal number variation can be identified in three regions which are termed as Region I, II, and III based on the general trend of the test results. It is also found that the corner cut is effective in one region (Region-II) and less effective in another one (Region-III) when only the vortex-induced vibration occurs.

동축 반전 스월러의 플레어 각도변화가 스월러 유동에 미치는 영향 연구 (Effect of Flare Angle in Counter-Rotating Swirler on Swirling Flow)

  • 김택현;김성돈;진유인;민성기
    • 한국연소학회지
    • /
    • 제21권1호
    • /
    • pp.31-37
    • /
    • 2016
  • Swirler generates the overall swirling flow in the combustion chamber and this swirling flow governs the flame stability and enhances fuel atomization. This paper deals with the flare angle effects on flow streamlines, recirculation zone, Central Toroidal Recirculation Zone(CTRZ) and Corner Recirculation Zone(CRZ) in the model combustion chamber using counter-rotating swirler. 2D PIV system was employed to obtain the velocity components and test condition was obtained using Reynolds Analogy equivalent to air test. We observed transitional flow patterns of flare angle increased. The obtained results show that the flare angle controls the behavior of Recirculation zone, Central Toroidal Recirculation Zone and Corner Recirculation Zone.