• Title/Summary/Keyword: Corner Cutting

Search Result 38, Processing Time 0.021 seconds

Polarization-Diversity Cross-Shaped Patch Antenna for Satellite-DMB Systems

  • Lim, Jong-Hyuk;Back, Gyu-Tae;Yun, Tae-Yeoul
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.312-318
    • /
    • 2010
  • A small reconfigurable patch antenna is proposed to achieve polarization diversity for digital multimedia broadcasting systems at 2.6 GHz. To obtain polarization diversity, a pair of on-slit PIN diodes is inserted in each diagonal of a cross-shaped patch. Thus, four PIN-diodes on these slits are utilized to change the connection of the slits and thus achieve polarization. Bias circuits for the diodes are allocated in the cutting corner of the cross-shaped patch to minimize the antenna size. The antenna produces left-hand circular polarization, right-hand circular polarization, or linear polarization, depending on the PIN-diode status. Analysis of circular polarization operation is explicated. Measurements show a gain of about 1.5 dB, a cross polarization of about -20 dB, and an axial ratio of about 2.5 dB.

A Split Die Design for Forging of Hexagonal Bolt Head (육각볼트 헤드 단조를 위한 분할금형설계)

  • Qiu, Yuangen;Cho, Hae Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.91-97
    • /
    • 2020
  • A split-die design for the cold forging of symmetric parts such as those having a hexagonal cross-section is presented in this paper. Parts with a hexagonal cross-section, such as bolt heads and nuts, should be forged with a die that has a hexagonal-shaped hole. A split type die is required to mitigate the buildup of stress concentrations located at the corners of the hexagonal hole. Generally, the insert of a hexagonal die is made by cutting each corner of a cylinder using a hexagonal hole and then combined with the die and shrink-fitted. However, split dies face problems when extruding material at the corners of the hexagonal split die. To address this problem, two types of split dies were evaluated: rounded hexagonal dies and angular hexagonal dies. The effects of the pre-stress ring on the dies were compared and analyzed and results show that using the angular split hexagonal die can extend the lifetime of forging dies.

Study on Structural Performance of Two Seam Cold-Formed Square CFT Column to Beam Connections with Internal Diaphragm (2-Seam 냉간성형 각형 CFT 기둥-보 내다이아프램 접합부의 구조성능에 관한 연구)

  • Oh, Heon-Keun;Kim, Sun-Hee;Choi, Young-Hwan;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.27-37
    • /
    • 2012
  • The construction of a moment connection for a rectangular hollow section (RHS) column and a H-shaped beam is difficult because the RHS is a closed section. When a inner diaphragm is used for such a connection, in general, it is installed after cutting the HSS columns, which results in increased construction work. This paper suggests a new fabrication method to overcome such problems: An inner diaphragm is welded to inside a C-shaped section first, and then a column is fabricated by welding two C-shaped sections. This fabrication method is superior to a classic method in terms of constructibility. An experimental and a numerical study using Ansys 9.0 were performed in order to compare the strength of connections with respect to the presence of concrete, the corner shape of diaphragm, and the axis of loading. The experimental results including initial stiffness and ultimate loads are reported and the analytical results including load transfer mechanism, degree of stress concentration, and strain distribution are also reported.

Reason of Die Fracture in Hot Forging of an Aluminum Fixed Scroll and Its Practical Measures (알루미늄 고정 스크롤 열간 단조공정의 금형 파괴 원인 및 실용적 대책)

  • Kim, Y.S.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.3
    • /
    • pp.156-161
    • /
    • 2017
  • In this study, the reason of die fracture occurring in hot forging of an aluminum fixed scroll was studied, based on experiments and finite element predictions. The material is assumed to be rigid-viscoplastic, and the die is rigid for the finite element predictions. The stress in the tension at the wrap root is known to cause brittle fracture, and the increase in the tensile stress is owing to the unbalanced filling of material into the die cavities between both sides of the warp. Based on the empirical and numerical achievements, the effects of geometrical parameters of the material on the die fracture were examined to find practical measures for elongated die life. It has been shown from the parametric study that the material with the optimized trapezoidal cross-section, which can be easily made during cutting or the optimized cylindrical billet with its eccentric placement in the die cavity, can considerably reduce the magnitude of the tensile stress around the die corner fractured, indicating that economical manufacturing with reduced number of stages and elongated die life can be realized at once using the optimized practical initial material.

Hybrid Control Strategy for Autonomous Driving System using HD Map Information (정밀 도로지도 정보를 활용한 자율주행 하이브리드 제어 전략)

  • Yu, Dongyeon;Kim, Donggyu;Choi, Hoseung;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.80-86
    • /
    • 2020
  • Autonomous driving is one of the most important new technologies of our time; it has benefits in terms of safety, the environment, and economic issues. Path following algorithms, such as automated lane keeping systems (ALKSs), are key level 3 or higher functions of autonomous driving. Pure-Pursuit and Stanley controllers are widely used because of their good path tracking performance and simplicity. However, with the Pure-Pursuit controller, corner cutting behavior occurs on curved roads, and the Stanley controller has a risk of divergence depending on the response of the steering system. In this study, we use the advantages of each controller to propose a hybrid control strategy that can be stably applied to complex driving environments. The weight of each controller is determined from the global and local curvature indexes calculated from HD map information and the current driving speed. Our experimental results demonstrate the ability of the hybrid controller, which had a cross-track error of under 0.1 m in a virtual environment that simulates K-City, with complex driving environments such as urban areas, community roads, and high-speed driving roads.

A study on excavator front support parts to minimize springback defects (굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출)

  • Jeon, Yong-Jun;Heo, Young-Moo;Lee, Ha-Sung;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

Experimental Study of Characteristics of Assist Gas in Laser Machining Using Supersonic Rectangular Nozzle (초음속 사각노즐을 이용하는 레이저 가공 보조가스의 특성에 관한 실험적 연구)

  • Son, Sang-Hyuk;Jun, Dong-Yeon;Lee, Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.233-240
    • /
    • 2012
  • An experimental study to improve the impingement characteristics of the assist gas in laser cutting was carried out. For various assist-gas pressures, and locations and installation angles of the nozzle, the characteristics of the impingement of the jet from a supersonic rectangular nozzle were compared to those previously observed for typical circular nozzles. Schlieren flow visualizations and Pitot pressure measurements downstream of the kerf surface were utilized for this purpose. The present rectangular supersonic nozzle decreased the strength of the Mach disc occurring at the corner of the kerf surface, and thus, could weaken the separation of the assist gas on the kerf surface and increase the Pitot pressures downstream compared to conventional circular nozzles.

Development of Path Tracking Algorithm and Variable Look Ahead Distance Algorithm to Improve the Path-Following Performance of Autonomous Tracked Platform for Agriculture (농업용 무한궤도형 자율주행 플랫폼의 경로 추종 및 추종 성능 향상을 위한 가변형 전방 주시거리 알고리즘 개발)

  • Lee, Kyuho;Kim, Bongsang;Choi, Hyohyuk;Moon, Heechang
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.142-151
    • /
    • 2022
  • With the advent of the 4th industrial revolution, autonomous driving technology is being commercialized in various industries. However, research on autonomous driving so far has focused on platforms with wheel-type platform. Research on a tracked platform is at a relatively inadequate step. Since the tracked platform has a different driving and steering method from the wheel-type platform, the existing research cannot be applied as it is. Therefore, a path-tracking algorithm suitable for a tracked platform is required. In this paper, we studied a path-tracking algorithm for a tracked platform based on a GPS sensor. The existing Pure Pursuit algorithm was applied in consideration of the characteristics of the tracked platform. And to compensate for "Cutting Corner", which is a disadvantage of the existing Pure Pursuit algorithm, an algorithm that changes the LAD according to the curvature of the path was developed. In the existing pure pursuit algorithm that used a tracked platform to drive a path including a right-angle turn, the RMS path error in the straight section was 0.1034 m and the RMS error in the turning section was measured to be 0.2787 m. On the other hand, in the variable LAD algorithm, the RMS path error in the straight section was 0.0987 m, and the RMS path error in the turning section was measured to be 0.1396 m. In the turning section, the RMS path error was reduced by 48.8971%. The validity of the algorithm was verified by measuring the path error by tracking the path using a tracked robot platform.