• Title/Summary/Keyword: Corner Cutting

Search Result 38, Processing Time 0.03 seconds

A Realization of Deburring Robot using Vision Sensor (비젼 센서를 이용한 디버링 로봇의 구현)

  • 배준영;주윤명;김준업;이상룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.466-469
    • /
    • 2002
  • Burr is a projected part of finished workpiece. It is unavoidable and undesirable by-product of most metal cutting or shearing process. Also, it must be removed to improve the fit of machined parts, safety of workers, and the effectiveness of finishing operation. But deburring process is one of manufacturing processes that have net been successfully automated, so deburring automation is strongly needed. This paper focused on developing a basic algorithm to find edge of workpiece and match two different image data for deburring automation which includes automatic recognition of parts, generation of deburring tool paths and edge/corner finding ability by analyzing the DXF drawing file which contains information of part geometry. As an algorithm for corner finding, SUSAN method was chosen. It makes good performance in finding edge and corner in suitable time. And this paper suggested a simple algorithm to find matching point between CCD image and drawing file.

  • PDF

Analysis on Cutting Force of Tool in Gear Chamfering Process (기어 챔퍼링 공정에서 공구의 절삭력 해석)

  • Choi, Boo-Rim;Hwang, Kwang-Bok;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.52-62
    • /
    • 2013
  • In order to obtain the relation between the cutting force and the process parameters in the chamfering process for the gear of a gear shaft, analysis of the process was performed with a simplified model instead of considering the whole actual 3-dimensional cutting situation produced between cutting tool and gear. The model divided the actual situation into the accumulation of hundreds of 2-dimensional layers with a small thickness in the direction of the height of gear and derived cutting force at a cutting position by accumulating each cutting force calculated in a layer. With proposed method to analyze the cutting forces in the chamfering process, it was revealed that the cutting position and size were exactly searched to calculate the cutting force in each layer. The total cutting force was the highest in the corner where the cutter encountered the gear first during the relative motion between them. The cutting forces were changed in proportion to the cutting parameters such as feed rate and trajectory.

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

Development of Drill Geometry for Burr Minimization in Drilling (구멍가공시 버형성 최소화를 위한 드릴형상 개발)

  • 장재은;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.911-914
    • /
    • 1997
  • This Experiment was carried out for bur minimization in drilling. New drill geometries are proposed to minimize the burr formation in drilling operation. Three types of drills are made, champer, round and step drill. The burr formed in first cutting by front cutting edge ca be removed in second cutting by the cutting edges in chamfer, round edge and step. New burrs are formed by second cutting and can be minimized according to the change of drill geometry like, chamfer size and angle, corner radius in round drill and step size and angle in step drill. To measure the burr formed in drilling, laser sensor is used.

  • PDF

Two axis control characteristics of linear motor feed system (리니어모터 이송시스템의 2축제어특성에 관한 연구)

  • 유송민;신관수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.405-410
    • /
    • 2002
  • Linear motor food system control algorithm was extended to the two axis system. Among several factors considered, overshoot of the response was the most important one in minimizing position tracking error. Balance between overshoot and settling time has to be adjusted to guarantee to best tracking performance. Tracking route was carefully executed to eliminate the possible error during the machining process. Even though there exists slight discrepancy between desired mute and cutting track at the corner, precision machining could be implemented using the cutting scheme introduced.

  • PDF

Reducing Effect of Wind-induced Vibration on Rectangular Model of Super-Highrise Building with Length of Corners Cutting (초고층 건물의 각주형 단면에 대한 공력 불안정 진동 및 풍진 저감 효과에 관한 실험적 연구)

  • Cheong, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.301-311
    • /
    • 2001
  • For a rectangular-highrise building with aspect ratio about six, the resonant wind speed of wind-induced vibration or galloping start wing speed can be within the design wind speed. The wind-induced vibration and galloping of highrise building with aspect ratio $H/\sqrt{DB}=6$, side ratio D/B=1 to 2 at intervals of 1/4 D/B were investigated in smooth flow. For the reducing effect of wind-induced vibration of highrise building, rectangular-highrise building with corners cutting about side ratio D/B=2 were investigated. Experimental results show that in the smooth flow non corners-cutting cases have tendency of increasing wind-induced vibration and galloping vibration then corner-cutting section. Therefore, the wind-induced vibrations on rectangular-highrise buildings were reduced effectively by using corner cut method.

  • PDF

A study on the improvement of cutting precision of CNC system using $H_{\infty}$ 2-degree-of-freedom controller ($H_{\infty}$ 2 자유도 제어기를 이용한 CNC 시스템의 가공 정밀도 향상에 관한 연구)

  • 최성규;최병욱;현용탁;강성귀;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1040-1043
    • /
    • 1996
  • The accuracy of the servo control in CNC system has a great influence on the duality of machine product. Tracking performance of the servo control is deteriorated mainly by the time delay of the servo system and the inertia of the work table or bed. Contouring errors occur in every interpolation steps by the effect of the tracking performance. In this paper, $H_{\infty}$ two-degree-of-freedom(TDF) controller is designed for improvement to improve the tracking performance. The designed controller is applied 3-axis machining center model and the cutting accuracy is simulated in case of corner cutting, circular and involute interpolation. Simulation results show that $H_{\infty}$ TDF controller designed in this paper has a good effect to improve tracking performance in CNC system.

  • PDF

A Study on the Design of Throw-away Cutting Tool System for Deep Grooving or Cut-off Machining (깊은 홈 및 절단가공용 드로우어웨이식 초경공구 시스템의 설계에 관한 연구)

  • Kim, Hyeung-Chul;Lee, Woo-Young;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.123-130
    • /
    • 1996
  • The procedure on the design of a new tungsten cabide throw-away cutting tool system for deep grooving or cut-off machining is suggested. For relieving the maximum stress level at the corner radius of the blade holder, the finite element method is used. Also the pulling test device is proposed for measuring the holding force of the insert between the blade holder and the insert considering the materials in contact and configuration parameters of the holder.

  • PDF

Investigation of Cutting Characteristics in the Sharp Edge for the Case of Cutting of a Low Carbon Steel Sheet using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 저탄소 냉연강판 절단시 모서리부 절단 특성 분석)

  • Ahn, Dong-Gyu;Yoo, Young-Tae
    • Journal of Welding and Joining
    • /
    • v.24 no.4
    • /
    • pp.32-38
    • /
    • 2006
  • The objective of present research works is to investigate the effects of process parameters, including the power of laser, cutting speed, material thickness, and the edge angle, on the melted area in the sharp edge of the cut material fur the case of cutting of a low carbon steel sheet using high-power CW Nd:YAG laser. In order to investigate the influence of edge angle and size of loop on the melted area in the sharp edge, angular cutting tests and loop cutting tests have been carried out. From the results of angular cutting tests, the relationship between the edge angle and the melted area has been obtained. The results of the experiments have been shown that the melted area is rapidly reduced from $120^{\circ}$ of the edge angle and the melted area is nearly zero at $150^{\circ}$ of the edge angle. Through the results of loop cutting experiments, the relationship between the cutting angle on the melted area in the edge according to the size of loop have been obtained. In addition, it has been shown that a proper size of loop is nearly 3 mm as the corner angle is greater than $90^{\circ}$ and 5 mm as the comer angle is less than $90^{\circ}$. The results of above experiments will be reflected on the knowledge base to generate optimal cutting path of the laser.

Modeling Cutter Swept Angle at Cornering Cut

  • Chan, K.W.;Choy, H.S.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.1-12
    • /
    • 2003
  • When milling concave corners, cutter load increases momentarily and fluctuates severely due to concentration and uneven distribution of material stock. This abrupt change of cutter load produces undesirable machining results such as wavy machined surface and cutter breakage. An important factor for studying cutter load in 2.5D pocket milling is the instantaneous Radial Depth of Cut (RDC). However, previous work on RDC under different corner-cutting conditions is lacking. In this different corner shapes. In our work, we express RDC mathematically in terms of the instantaneous cutter engage angle which is defined as Cutter Swept Angle (CSA). An analytical approach for modeling CSA is explained. Finally, examples are shown to demonstrate that the proposed CSA modeling method can give an accurate prediction of cutter load pattern at cornering cut.