• Title/Summary/Keyword: Corn Straw

Search Result 98, Processing Time 0.023 seconds

Effect of Levels of Nutrient on the Growing Performance and Nutrient Intake of Holstein as Influenced by Source of Roughage (조사료 급여원과 영양수준이 홀스타인 육성우의 성장 및 양분 섭취량에 미치는 효과)

  • Sang Gi Yun;Hyeun Shup Kim;Woo Sung Kang;Jong Hwangbo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.2
    • /
    • pp.139-144
    • /
    • 1993
  • This experiment was carried out to determine the body weight gain, days required to be grown from 100 to 400kg body weight and nutrient intake of thirty growing Holstein heifers fed three different levels of nutrient (80, 100 and 120% of NRC requirement) by two different sources of roughage (corn silage and rice straw). The experiment was arranged as a completely random block design with 5 replications. The results obtained are summarized as follows: I. Average daily weight gain of heifers fed corn silage and rice straw was the highest at 200 and 250kg body weight, respectively. 2. As body weight increased, OM, CP and TON requirement increased-especially requirement of those nutrients being the highest at about 250- 300kg body weight. 3. At 250- 300kg body weight, correlations between body weight(X) and OM, CP and TON intake(l) requirement are the following. DMI = 8.0168X - 0.0209 (r=0.7986$^{**}$) CPI = 101428X - 0.0145 (r=0.5787$^{**}$) TDNI = 6.7620X - 0.3702 (r=0.6877$^{**}$)

  • PDF

Roughage Energy and Degradability Estimation with Aspergillus oryzae Inclusion Using Daisy In vitro Fermentation

  • Chen, C.R.;Yu, B.;Chiou, P.W.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • The aim of this study was to predict the energy value and dynamic degradation of roughage in Taiwan using the $Daisy^{(R)}$. in vitro fermentation method to provide information on one of the very important nutrients for ration formulation. The second objective was to study the effects of Aspergillus oryzae (AFE) inclusion on nutrient utilization. Three ruminal fistulated dry dairy cows were used for rumen fluid and fifteen conventional forages used in dairy cattle were collected around this island. The degradability of these feedstuffs with and without AFE ($Amaferm^{(R)}$.) treatment was measured using the $Daisy^{(R)}$. in vitro method. The roughage energy values, including TDN and NEL, were calculated according to Robinson (2000). Results from the 30 h in vitro neutral detergent fiber (NDF) degradability and predicted energy evaluations showed that alfalfa (among the forages) contained the highest degradability and energy values, Bermuda straw having the lowest. Peanut vines and corn silage contained higher energy values and the lowest value found in Pangola and Napier grasses among the locally produced forages. Pangola and Napier grasses had lower values than most imported forages except Bermuda straw. Among the by-products, wheat middling contained the highest NDF degradability, while rice bran contained the richest energy value due to its high oil content. From the dynamic dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) degradation, corn silage contained the highest effective degradation among the local forages; wheat middling (among the by-products) degraded the fastest in DM, OM, ADF and NDF and showed the highest effective degradability. AFE inclusion was inconsistent among the forages. Alfalfa hay showed significantly increased 30 h NDF degradability and energy values, Pangola hay, Napier grass and brewer's grains showed decreased degradability and energy values. AFE inclusion increased the DM, OM and NDF degradation rate in most forage, but only increased the DM degradation rate in sorghum distiller's grains, the OM degradation rate in bean curd pomace and the NDF and ADF degradation rates in soy pomace (among the by-products).

Effect of Operational Parameters on the Products from Catalytic Pyrolysis of Date Seeds, Wheat Straw, and Corn Cob in Fixed Bed Reactor

  • Sultan Mahmood;Hafiz Miqdad Masood;Waqar Ali khan;Khurram Shahzad
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.591-597
    • /
    • 2023
  • Pakistan depends heavily on imports for its fuel requirements. In this experiment, catalytic pyrolysis of a blend of feedstock's consisting of date seed, wheat straw, and corn cob was conducted in a fixed bed reactor to produce oil that can be used as an alternative fuel. The main focus was to emphasize the outcome of important variables on the produced oil. The effects of operating conditions on the yield of bio-oil were studied by changing temperature (350-500 ℃), heating rate (10, 15, 20 ℃/min), and particle size (1, 2, 3 mm). Moreover, ZnO was used as a catalyst in the process. First, the thermal degradation of the feedstock was investigated by TGA and DTG analysis at 10 ℃/min of different particle sizes of 1, 2, and 3mm from a temperature range of 0 to 1000 ℃. The optimum temperature was found to be 450 ℃ for maximum degradation, and the oil yield was indicated to be around 37%. It was deduced from the experiment that the maximum production of bio-oil was 32.21% at a temperature of 450 ℃, a particle size of 1mm, and a heating rate of 15 ℃/min. When using the catalyst under the same operating conditions, the bio-oil production increased to 41.05%. The heating value of the produced oil was 22 MJ/kg compared to low-quality biodiesel oil, which could be used as a fuel.

Influence of Transgenic Corn on the In vitro Rumen Microbial Fermentation

  • Sung, Ha Guyn;Min, Dong Myung;Kim, Dong Kyun;Li, De Yun;Kim, Hyun Jin;Upadhaya, Santi Devi;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1761-1768
    • /
    • 2006
  • In this study, the comparative effects of transgenic corn (Mon 810 and Event 176) and isogenic corn (DK729) were investigated for their influence on in vitro rumen fermentation. This study consisted of three treatments with 0.25 g rice straw, 0.25 g of corn (Mon810/Event176/DK 729) mixed with 30 ml rumen fluid-basal medium in a serum bottle. They were prepared in oxygen free conditions and incubated at $39^{\circ}C$ in a shaking incubator. The influence of transgenic corn on the number of bacterial population, F. succinogenes (cellulolytic) and S. bovis (amylolytic), was quantified using RT-PCR. Fermentative parameters were measured at 0, 2, 4, 8, 12 and 24 h and substrate digestibility was measured at 12 and 24 h. No significant differences were observed in digestibility of dry matter, NDF, ADF at 12 and 24 h for both transgenic and isogenic form of corns (p>0.05) as well as in fermentative parameters. Fluid pH remained unaffected by hybrid trait and decreased with VFA accumulation as incubation time progressed. No influence of corn trait itself was seen on concentration of total VFA, acetic, propionic, butyric and valeric acids. There were no significant differences (p<0.05) in total gas production, composition of gas (methane and hydrogen) at all times of sampling, as well as in NH3-N production. Bacterial quantification using RT-PCR showed that the population number was not affected by transgenic corn. From this study it is concluded that transgenic corn (Mon810 and Event 176) had no adverse effects on rumen fermentation and digestibility compared to isogenic corn. However, regular monitoring of these transgenic feeds is needed by present day researchers to enable consumers with the option to select their preferred food source for animal or human consumption.

Review of the Current Forage Production, Supply, and Quality Measure Standard in South Korea

  • Kim, Jong Duk;Seo, Myeongchon;Lee, Sang Cheol;Han, Kun-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.3
    • /
    • pp.149-155
    • /
    • 2020
  • Cattle feeding in South Korea has been heavily dependent on domestically produced rice straw and imported grain. Around 42% of domestically produced rice straw is utilized for forage, and the remainder is recycled to restore soil fertility. Approximately 35% of round baleages were made with rice straw. However, higher quality hay is desired over rice straw. Due to increasing stockpiles of rice, there has been an economic burden on the government to store the surplus; therefore production of annual forage crops in rice fields has been further promoted in recent years. Hay import from the USA currently constitutes more than 80% of total imported hays. The main imported hays are alfalfa (Medicago sativa), timothy (Phleum pretense), and tall fescue (Festica arundinacea). The estimated forage required for cattle feeding was approximately 5.4 million MT in 2016. Domestically produced forage sates only 43% of that value, while low quality rice straw and imported hay covered the rest of demand by 33% and 20%, respectively. As utilization of domestically produced forage is more desirable for forage-based cattle production, long-term strategies have been necessary to promote domestic production of high quality baleage. One such strategy has been utilizing the fertile soil and abundance of fallow rice fields of western region of S. Korea to produce forage crops. Italian ryegrass (Lolium multiflorum) is the most successfully produced winter annual in the region and is approximately 56% of the total winter annual forage production. Forage sorghums (Sorghum bicolor), sorghum × sudangrass hybrids, and hybrid corn (Zea mays) produce a substantial amount of warm-season forage during summer. Produced forage has been largely stored through baleage due to heavy dew and frequent rains and has been evaluated according to S. Korea's newly implemented baleage commodity evaluation system. The system weighs 50% of its total grading points on moisture content because of its importance in deliverable DM content and desirable baleage fermentation; this has proved to be an effective method. Although further improvement is required for the future of forage production in South Korea, the current government-led forage production in rice fields has been able to alleviate some of the country's shortage for quality hay.

The Use of Cassava Chips as an Energy Source for Lactating Dairy Cows Fed with Rice Straw

  • Sommart, K.;Wanapat, M.;Rowlinson, P.;Parker, D.S.;CIimee, P.;Panishying, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1094-1101
    • /
    • 2000
  • Thirty-six crossbred (70% Holstein Friesian) cows in mid-lactation were assigned to one of four treatments. The dietary treatments were concentrate based, containing 13.5, 27.0, 40.5 and 54.0% of cassava in concentrate replacing ground maize (16.0% CP). There were curvilinear responses to intake of organic matter, non-structural carbohydrate and metabolisable energy. Cassava and corn fed in a ratio of 50:50 maximised organic matter, metabolisable energy intake; milk yield, milk protein and lactose yield. Milk fat yield was not affected by levels of inclusion. Dietary treatment did not influence ruminal pH, ammonia and volatile fatty acid concentrations or plasma glucose. The low market price for cassava resulted in a lower concentrate feed cost. The optimal level of cassava in a dairy cow diet is suggested as being between 20.0 and 30.0% of cassava in dry matter intake when fed with rice straw.

Development of Supercapacitors Using Porous Carbon Materials Synthesized from Plant Derived Precursors

  • Khairnar, Vilas;Jaybhaye, Sandesh;Hu, Chi-Chang;Afre, Rakesh;Soga, Tetsu;Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.188-194
    • /
    • 2008
  • Porous carbon materials synthesized from various plant derived precursors i.e. seeds of [Castor (Ricinus communis), Soap nut (Sapindus sp.), Cashew-nut (Semecarpus anacardium), Jack fruit (Artocarpus heterophyllus), Safflower (Carthamus tinctorius), Ambadi (Crotolaria juncea), Neem (Azadirachta indica), Bitter Almond (Prunus amygdalus), Sesamum (Sisamum indicum), Date-palm (Phoenix dactylifera),Canola (Brassica napus), Sunflower (Helianthus annulus)] and fibrous materials from [Corn stem- (Zea mays), Rice straw (Oryza sativa), Bamboo (Bombax bambusa) and Coconut fibers (Cocos nucifera)] were screened to make supercapacitor in 5M KOH solution. Carbon material obtained from Jack fruit seeds (92.0 F/g), Rice straw (83.0 F/g), Soap nut seeds (54.0 F/g), Castor seeds (44.34 F/g) and Bamboo (40.0 F/g) gave high capacitance value as compared to others. The magnitude of capacitance value was found to be inversely proportional to the scan rate of measurement. It is suggested that carbon material should possess large surface area and small pore size to get better value of capacitor. Moreover, the structure of carbon materials should be such that majority of pores are in the plane parallel to the plane of electrode and surface is fluffy like cotton ball.

Occurrence of severe soybean-sprout rot caused by Pythium deliense in the recirculated production system

  • Yun, Sung-Chul
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.92.2-93
    • /
    • 2003
  • Severe soybean-sprout rot was found at the mass productive factory in 2000 and 2001 and it caused 10-20% loss of the production. Pythium sp. was isolated almost 90% by potato dextrose agar from rotted root and hypocotylsof the sprouts. And the pathogencity tests using test tubes with 2% water agar and small containers (30 ${\times}$ 30 ${\times}$ 50 cm, WxLxH) cultivation were shown a similar rot on roots and hypocotyls. The fungal mycelium grew rapidly on the water agar and it prevented the seed germination. Density of the Pythium sp. in the recycled water system at the factory was periodically measured using a selective medium, corn meal agar with Pimaricin 10 mg, Rifampicin 10 mg, Ampicillin 100 mg per 1 liter in order to check the contamination of recycled water. After fitering step using 5 and 1 ml in the recycled system was applied and it was effectively controlled Pythium rot. The daily yield of sprout was stable and the occurrenceof Pythium in the recycled water was much less after filtering. The fungal isolates were identified as Pythium deliense Meurs based on various mycological characteristics on corn meal agar and sucrose-asparagine bentgrass leaf culture medium. P. deliens oogonia were spherical, smooth, 19-23 urn in diameter, and their stalk bending toward antheridia. Antheridia were straw hat-shaped, curred club-shaped, therminal or intercalary, monoclinous, occasionally diclinous, 12∼15 ${\times}$ 8∼11 um, 1(∼2) per oogonium.

  • PDF

Chewing Activities of Selected Roughages and Concentrates by Dairy Steers

  • Moon, Y.H.;Lee, S.C.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.968-973
    • /
    • 2002
  • To evaluate the chewing activity of ruminant feeds, four Holstein steers (average body weight $742{\pm}15kg$) were employed. Experimental feeds were four roughages ($NH_3$-treated rice straw, alfalfa hay, corn silage, orchard grass hay) and four concentrate ingredients (cotton seed hull, beet pulp pellet, barley grain, oat grain). Regarding palatability for each experimental feeds which was overviewed during the adjustment period, animals were fed roughages alone, but with 50% $NH_3$-treated rice straw ($NH_3$-RS) for concentrate ingredients. Therefore, all the data for concentrate ingredients was derived by extracting the result per unit obtained from steers fed $NH_3$-RS alone. The experiment was conducted using a 4${\times}$4 Latin square designs for roughages and concentrate ingredients. Experimental feeds were fed during a 10 d adaptation and 2 d chewing data collection during each experimental period. Animals were gradually adjusted to the experimental diet. Dry matter intake (DMI) was restricted at a 1.4% of mean body weight (10.4 kg DM/d). Time spent eating and eating chews per kilogram of DMI were greatest for beet pulp pellet, and lowest for barley grain (p<0.05). Time spent rumination per kilogram of DMI was greatest for $NH_3$-RS, cotton seed hull and orchard grass, but rumination chews were greatest for cotton seed hull and orchard grass except $NH_3$-RS (p<0.05). Roughage index value (chewing time, minute/kg DMI) was 58.0 for cotton seed hull, 56.1 for beet pulp pellet, 55.5 for $NH_3$-RS, 53.1 for orchard grass hay, 45.9 for corn silage, 43.0 for alfalfa hay, 30.0 for oat grain, and 10.9 for barley grain. The ratio of rumination time to total chewing time (eating plus ruminating) was about 72% for the roughages except corn silage (66.9%), and followed by cotton seed hull (69.5%), and ranged from 49.5% to 52.9% for other feeds. Higher percentages of rumination in total chewing time may be evidently indicate the characteristics of roughage. Therefore, this indicate that the chewing activity of concentrate ingredients can be more fully reflects by the ruminating time than total chewing time (RVI), although it is reasonable to define the RVI for roughages.

Effects of Non-ionic Surfactant Supplementation on Ruminal Fermentation, Nutrient Digestibility and Performance of Beef Steers Fed High-roughage Diets

  • Ahn, Gyu-chul;Kim, Jeong-hoon;Park, Eun-kyu;Oh, Young-Kyoon;Lee, Gang-yeon;Lee, Jung-il;Kim, Chong-min;Park, Keun-kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.993-1004
    • /
    • 2009
  • Three experiments were conducted to determine the effects of non-ionic surfactant (NIS) supplementation on ruminal fermentation, nutrient digestibility and performance of beef steers fed high-roughage diets. The objective of experiment 1 was to investigate the effects of NIS supplementation on in vitro ruminal fermentation of cultures administered with corn and barley as grain substrate and rice straw and timothy hay as roughage substrate. The in vivo ruminal fermentation, nitrogen balance and digestibility of nutrients were also examined with steers fed a high-roughage diet in experiment 2. The aim of experiment 3 was to determine the responses to NIS of growing steers fed a high-roughage diet. In experiment 1, ammonia nitrogen concentration for NIS supplementation was higher (p<0.05) than for the control with all substrates. However, concentrations of total volatile fatty acid (VFA), acetate, butyrate and valerate of the incubated roughage substrates, rice straw and timothy hay, were higher (p<0.05) for NIS supplementation than for the control whereas VFA concentrations in the cultures of corn and barley were unaffected. These results indicated that effects of NIS on ruminal fermentation are diet dependent, specifically on roughage sources. In experiment 2, ruminal pH of steers supplemented with NIS was lower (p<0.05) than the control. Ruminal concentrations of ammonia nitrogen, acetate, total VFA and urinary concentrations of purine derivatives were increased (p<0.05) by NIS supplementation. In experiment 3, supplementation of NIS increased (p<0.05) intakes of total feed and corn silage, average daily gain, and feed efficiency of growing steers although they varied depending on supplementation level. Due to the roughage-specific feature of NIS effects, NIS appears to enhance ruminal fermentation of fibrous parts of feeds and, consequently, performance of steers fed a high-roughage diet.