• 제목/요약/키워드: Corium Debris Bed

검색결과 4건 처리시간 0.017초

Study on dryout heat flux of axial stratified debris bed under top-flooding

  • Wenbin Zou;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.636-643
    • /
    • 2024
  • The coolability of the debris bed with a simulant of solidified corium is experimentally studied, focusing on the effects of the structure of the axial stratified debris bed on the dryout heat flux (DHF). DHF was obtained for the four structures with different particle sizes for the axial stratified debris bed under top flooding. The experimental results show that the dryout position of the axial stratified debris bed is formed at the stratified interface indicated by the temperature rise, and the DHF of the axial stratified bed is much lower than that of the homogeneous bed packed with the upper small particles. To predict the dryout heat flux of the stratified debris beds, by considering the properties of the mixed area, a one-dimensional dryout heat flux model of the porous medium is derived from a water and vapor momentum equation for porous medium, two-phase permeability modifications, interfacial drag, and the correlation between capillary pressure and liquid saturation and verified with the experimental data. The modified model can give reasonable results under different structures.

Experiments on Sedimentation of Particles in a Water Pool with Gas Inflow

  • Kim, Eunho;Jung, Woo Hyun;Park, Jin Ho;Park, Hyun Sun;Moriyama, Kiyofumi
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.457-469
    • /
    • 2016
  • During the late phase of severe accidents of light water reactors, a porous debris bed is expected to develop on the bottom of the flooded reactor cavity after breakup of the melt in water. The geometrical configuration, i.e., internal and external characteristics, of the debris bed is significant for the adequate assessment of the coolability of the relocated corium. The internal structure of a debris bed was investigated experimentally using the DAVINCI (Debris bed research Apparatus for Validation of the bubble-Induced Natural Convection effect Issue) test facility. Particle sedimentation under the influence of a two-phase natural convection flow due to the decay heat in the debris bed was simulated by dropping various sizes of particles into a water vessel with air bubble injection from the bottom. Settled particles were collected and sieved to obtain the particle mass, size distribution in the radial and axial positions, and the bed porosity and permeability. The experimental results showed that the center part of the particle bed tended to have larger particles than the peripheral area. For the axial distribution, the lower layer had a higher fraction of larger particles. As the sedimentation progressed, the size distribution in the upper layers can shift to larger sizes because of the higher vapor generation rate and stronger flow intensity.

Characteristics of debris resulting from simulated molten fuel coolant interactions in SFRS

  • E. Hemanth Rao;Prabhat Kumar Shukla;D. Ponraju;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.283-291
    • /
    • 2024
  • Sodium cooled Fast Reactors (SFR) are built with several engineered safety features and hence a severe accident such as a core melt accident is hypothetical with a probability of <10-6/ry. However, in case of such accidents, the mixture of the molten fuel and structural materials interacts with sodium. This phenomenon is known as Molten Fuel Coolant Interaction (MFCI) and results in fragmentation of the melt due to various instabilities. The fragmented particles settle as a debris bed on the core catcher at the bottom of the reactor vessel, and continue to generate decay heat. Characteristics of the debris particles play a vital role in heat transfer from the bed and need thorough investigation. The size, shape, and physical state of the debris depend on the associated fragmentation mechanism, superheating of the melt, and sodium temperature. Experiments have been conducted by releasing simulated corium, a molten mixture of alumina and iron generated by the aluminothermy process at ~2400 ℃ into liquid sodium, to study the fragmentation phenomena. After the experiment, the fragmented debris was retrieved and the particle size distribution was determined by sieve analysis. The debris was subjected to microscopic investigation for obtaining morphological characteristics. Based on the characteristics of debris, an attempt has been made to assess of fragmentation mechanism of simulated corium in sodium.

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.