• Title/Summary/Keyword: Coriolis force

Search Result 132, Processing Time 0.02 seconds

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

The Response of Hadley Cell and Jet Stream to Earth's Rotation Rate (지구 자전속도에 따른 해들리 순환과 제트의 반응)

  • Cho, Chonghyuk;Kim, Seo-Yeon;Son, Seok-Woo
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.203-211
    • /
    • 2019
  • The two key factors controlling the atmospheric general circulation are the equator-to-pole temperature difference and the Coriolis force driven by Earth's rotation. Although the former's role has been extensively examined, little has been reported about the latter's effect. To better understand the atmospheric general circulation, this study investigates the responses of Hadley Cell (HC) and westerly jet to the rotation faster or slower than the present Earth's rotation rate. It turns out that the HC edge and jet position tend to move equatorward and become weaker with increasing rotation rate. In most cases, the HC edge is quasi-linearly related with the jet position except for the extremely slow or fast rotating cases. The HC edge is more inversely proportional to the root of rotation rate than the rotation rate in the range of 1/8 to 8 times of the current Earth's rotation rate. However, such a relationship does not appear in the relationship between HC strength and jet intensity. This result highlights that while the latitudinal structure of atmospheric general circulation can be, to some extent, scaled with the Earth's rotation rate, overall intensity cannot be simply explained by the Earth's rotation rate.