• Title/Summary/Keyword: Coriolis

Search Result 202, Processing Time 0.036 seconds

Advanced Internal Cooling Passage of Turbine Blade using Coriolis Force (전항력을 이용한 회전 블레이드 냉각성능 향상 방안 연구)

  • Park, Jun Su
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.37-41
    • /
    • 2016
  • The serpentine internal passage is located in turbine blade and it shows the variety heat transfer distribution. Especially, the Coriolis force, which is induced by blade rotation, makes different heat transfer distribution of the leading and trailing surfaces of serpentine internal passage. The different heat transfer is one of the reasons why the serpentine cooling passage shows low cooling performance in the rotating condition. So, this study tried to design the advanced the serpentine passage to consideration of the Coriolis force. The design concept of advanced serpentine cooling is maximizing cooling performance using the Coriolis force. So, the flow turns from leading surface to trailing surface in advanced serpentine passage to match the direction of Coriolis force and rotating force. We performed numerical analysis using CFX and compared the existing and advanced serpentine internal passage. This design change is induced the high heat transfer distribution of whole advanced serpentine internal passage surfaces.

The effects of target and missile dynamics on the optimal coriolis acceleration compensation (미사일 및 표적 운동을 고려한 시선지령유도에서의 코리올리 가속도 보상)

  • 류동영;탁민제;엄태윤;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.596-600
    • /
    • 1992
  • In CLOS guidance, feedback compensation of the Coriolis acceleration is used to reduce miss distance. This paper presents the effects of the bandwidth of target and missile on the optimal Coriolis acceleration compensation. A state space formulation of CLOS guidance is used to implement CLOS guidance in feedback form. And the LQR control method is applied to find the optimal feedback gain. From the analysis of the Riccati equations of the optimal control, the following facts are observed: When the target is agile, the optimal gain is reduced, since the compensation becomes ineffective. The missile bandwidth also affects the Coriolis accleration compensation. Narrower missile requires more compensation for the Coriolis acceleration.

  • PDF

An Analysis of Preservice Earth Science Teachers' Mental Models about Coriolis Force Concept (예비 지구과학 교사의 전향력 개념에 대한 정신모형 변화 분석)

  • Kim, Eunju;Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.3
    • /
    • pp.423-434
    • /
    • 2016
  • The purpose of this study is to investigate preservice earth science teachers' mental models through applications of Coriolis force experiment apparatus. After the root of preconception was examined by face to face interviews based on the questionnaire, five preservice earth science teachers were finally selected for this study. The mental models about concept of Coriolis force was classified into naive mental model, static unstable mental model, dynamic unstable mental model, and scientific mental model through the result of individual interviews and their drawings. According to the mental model analysis about Coriolis' force conception, students C and M showed naive mental model about concept of Coriolis force before experiment. After the experiment, student M's model changed to static unstable mental model. Student C's model improved to dynamic unstable mental model. In adiition, students D and O's model improved from static unstable mental model to dynamic unstable mental model. In the case of student B, the dynamic unstable mental model was maintained after the experiment, however, student B's preconception changed to scientific concept. It turned out that a change occurred from low mental model level to integrated mental model after the application of the developed Coriolis' force experiment apparatus. According to the results, national curriculum is similar to static unstable mental model and the result of developed Coriolis' force experiment apparatus is similar to dynamic unstable mental model. It is suggested that it become the theoretical foundation to develop more comfortable and advanced Coriolis force experiment apparatus by improving the experiment apparatus.

Seismic Anslysis of Rotating Machine-Foundation System (회전기계-기초의 상호작용을 고려한 지진해석)

    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 1998
  • The seismic behaviour of rotating machine-foundation systems subjected to six-component nonstationary earthquake ground accelerations is analyzed. The rotating machine-foundation system is idealized by using discs, rotating shaft, fluid-film journal bearings, pedestals, and space frame foundation. Thus, governing equations of motion for the rotating machine-foundation system are obtained by considering Gyroscopic effect, Coriolis effect, dynamic characteristics of fluid-film journal bearings, and translational and rotational motions of seismic rigid base. The influences due to Gyroscopic effects, Coriolis effects, and rotational motions of seismic base on the overall structural response are demonstrated by a numerical example. The results show that the inclusion of base rotations and Gyroscopic effects contributes significantly to the system response.

  • PDF

A Study on the Coriolis Force Technique and the Flat Bottom Foot Using Ceramic Electric Wheel (도자기 전기물레를 이용한 코리올리힘 기법과 평저굽 융합에 관한 연구)

  • Kim, Seung-Man
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.1
    • /
    • pp.441-451
    • /
    • 2018
  • The main point of this study is to use the principle of Coriolis force and the sense of fingertips to scratch the surface of the wall by high-speed rotation (RPM) to push the texture of the stripe from the inside to the outer wall, and to express the beautiful, dynamic and distinctive outer wall texture that is diversified by Coriolis force (centrifugal force). This is designated as Coriolis force technique. In addition, instead of the traditional flat bottom foot onggi molding technique, a new type of flat bottom foot that uses the electric wheel to push the cylinder from inside to out to expand the outer wall and to spread the bottom of foot flatly. The purpose of this study is to create a modernized, distinctive, new interior work by fusing these techniques.

Measurement of Developing Turbulent Flows in a Rotating 90 Degree Bend with Square Cross-Section (회전하는 정사각 단면 $90^{\circ}$ 곡덕트 내의 발달하는 난류유동의 측정)

  • Kim, Dong-Chul;Chun, Kun-Ho;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.819-824
    • /
    • 2001
  • Mean velocity and Reynolds stress components of the developing turbulent flows in a rotating 90 degree bend with square cross-section were measured by a hot-wire anemometer. Effects of the centrifugal and Coriolis forces generated by the curvature and rotation of bend on the mean motion and turbulence structures are investigated experimentally. Results show that the Coriolis force associated with the rotation of the bend may act both through the mean motion and turbulent structures, thereby changing the pressure fields, mean and turbulent velocities distributions.

  • PDF

Dynamic Characteristics of an Epicyclic Gear Train Considering Coriolis Effect (코리올리 효과를 고려한 유성기어열의 동특성)

  • Youn, In-Seong;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.491-498
    • /
    • 2003
  • In this paper, dynamic characteristics of an epicyclic gear train considering Coriolis effect have been studied. High speed transmissions such as in an aircraft engines will be strongly influenced by Coriolis effect. Gear meshes were modelled as springs and dampers with periodically varying mechanical constants with time. The loci of planet gear, sun gear. and carrier were analyzed. Maximum values of mesh forces between sun gear and planet gear(S/P) as well as between planet gear and ring gear(P/R) have been simulated as function of rotating speed.

Coriolis Coupling Influence on the H+LiH Reaction

  • Zhai, Hongsheng;Li, Wenliang;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.151-157
    • /
    • 2014
  • We have reported the reaction probability, integral reaction cross section, and rate constant for the title system calculated with the aid of a time-dependent wave packet approach. The ab initio potential energy surface (PES) of Prudente et al. (Chem. Phys. Lett. 2009, 474, 18) is employed for the purpose. The calculations are carried out over the collision energy range of 0.05-1.4 eV for the two reaction channels of H + LiH ${\rightarrow}$ Li + $H_2$ and $H_b$ + $LiH_a$ ${\rightarrow}$ $LiH_b$ + $H_a$. The Coriolis coupling (CC) effect are taken into account. The importance of including the Coriolis coupling quantum scattering calculations are revealed by the comparison between the Coriolis coupling and the centrifugal sudden (CS) approximation calculations.

Assisting High School Students to Redefine the Principle of Coriolis Force (전향력 발생 원리를 고등학생들에게 설명하기 위한 새로운 방법)

  • Jang, Swung-Hwan;Park, Hyo-Jin;Cho, Kyu-Seong;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.73-83
    • /
    • 2011
  • A new method was developed to better understand the principle of Coriolis force. We also investigated the understanding of 5 10th grade students and analyzed their responses. Since no clear explanation about the nature of a rotating disk is provided in school textbooks, it tends to be misunderstood as the earth surface revolving on its axis pointing to the North Pole. This study was carried out focusing on the fact that a rotating disk is the tangential plane at arbitrary latitude. Results showed that there are changes in students' conceptions on the principle of Coriolis force with a new understanding of the rotating disk. In conclusion, a new method used in this study helped students better understand the link between Coriolis force and rotating disk. The method would be helpful to clarify the principle of Coriolis force in school science.

Development of an Experimental Method for Understanding the Effects of the Coriolis Force on the Typhoon Genesis and its Movement (전향력이 태풍 발생 및 이동에 미치는 영향을 이해할 수 있는 실험 방법 개발)

  • Wie, Jieun;Jang, Swunghwan;Moon, Byungkwon
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.544-553
    • /
    • 2012
  • A simple experimental method was developed to help students understand the effect of the Coriolis force on typhoon genesis and movement. It consists of rotating tanks with and without a sloping bottom, and a small stirrer to produce cyclonic typhoon-like vortices by locally stirring the water. Vortices were able to last for more than 3 minutes without dissipation in the rotating tank. However, vortices were hardly maintained without rotation, and would rather disappear as soon as the stirrer stopped mixing. Since the dynamical properties of the rotating water are similar to those of the atmosphere influenced by the Coriolis force, the experiments show that the Coriolis force is indispensable to the typhoon genesis. When the tank had both the sloping bottom and rotation, vortices would move in a particular direction. Considering the topographical beta effect, this result indicates that typhoons are drifted not only by the steering wind but also by the meridional gradient of the Coriolis force. The methodology developed in this study, would be useful for both students and teachers to better the relationship between the Coriolis force and the typhoon genesis.