• Title/Summary/Keyword: Corilagin

Search Result 17, Processing Time 0.03 seconds

Screening of Natural Product Libraries for the Extension of Cell Life-span through Immune System (면역시스템을 통한 세포수명연장 천연물질 스크린)

  • Yoo, Bo-Kyung;Kwon, Kisang;Ko, Young Hwa;Kim, Hong Geun;Lee, Seokhyun;Park, Kwan-Ho;Choi, Ji-Young;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.359-363
    • /
    • 2016
  • We have screened four natural products against 640 single compounds, which shows more two folds gene expression for both endoplasmic reticulum aminopeptidase 1 (ERAP1) and FOXO-family transcription factor (FOXO1). The results were as follows. (±)-Car-3-ene-2,5-dione from Asarum sieboldii Miq. is C10H12O2 molecular formula and the 164 kDa molecular weight. Cinobufagin from Bufonis Venennum is C26H34O6 molecular formula and 442 kDa molecular weight. So far reported main biological function is Na+/K+-ATPase inhibition. Corilagin from Euphorbia pekinensis is C27H22O18 molecular formula and 634 kDa molecular weight. Carbonic anhydrase inhibition is well known its biological function. Corydaline from Corydalis turtschaninovii is C22H27NO4 molecular formula and 369 kDa molecular weight. The main biological function is acetylcholinesterase inhibition. In the short future, four types of natural products will be used in longevity experiments with insects. The results may give one of the clues for studying new drug development candidates of the longevity.

Chemical Study on the Phenolic Compounds from the Leaves of Securinega suffruticosa (광대싸리잎의 페놀성 화합물에 대한 화학적 연구)

  • Lee, Sang-Chul;Ahn, Byung-Tae;Park, Woong-Yang;Lee, Seung-Ho;Ro, Jai-Seup;Lee, Kyong-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.2
    • /
    • pp.105-112
    • /
    • 1994
  • A chemical examination of the aqueous acetone extract of the leaves of Securinega suffruticosa has led to the isolation of nine phenolic compounds. On the basis of chemical and spectroscopic evidences, the structures of these compounds were established to be gallic acid(1), corilagin(2), helioscopinin B(3), geraniin(4), bergenin (5), norbergenin(6), 11-O-galloyl norbergenin(7), gallocatechin(8) and rutin(9).

  • PDF

Phenolic Compounds from Acalypha australis L. (깨풀의 Phenol성 화합물에 관한 화학적 연구(I))

  • Park, Woong-Yang;Lee, Sang-Cheol;Ahn, Beung-Tae;Lee, Seung-Ho;Ro, Jai-Seup;Lee, Kyong-Soon
    • Korean Journal of Pharmacognosy
    • /
    • v.24 no.1
    • /
    • pp.20-25
    • /
    • 1993
  • Three phenolcarboxylic acids, two flavonoids and four hydrolysable tannins were isolated from the whole plant of Acalypha australis. On the basis of chemical and spectroscopic evidence, the structures of these compounds were established as gallic acid, protocatechuic acid, caffeic acid, rutin, isoquercitrin, corilagin, furosin and geraniin.

  • PDF

Study on the Antioxidant Activity of Geranium nepalense subsp. thunbergii Extract (이질풀 추출물의 항산화 효능에 관한 연구)

  • Lee, Sun-Young;Kim, Hyun-Ju;Choi, Shin-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • Antioxidant activity of Geranium nepalense subsp. thunbergii extract was evaluated by DPPH free radical scavenging assay. Geranium nepalense subsp. Thunbergii extract contains tannin, (-)epicatechin, kaempferitin, kaepferol -7-rhamnoside, brevifolin, corilagin, pyrogallol, ellagitannin, geraniin, gallic acid, succinic acid, quercetin, protocatechuic acid, etc. Geranium nepalense subsp. Thunbergii showed excellent antioxidant activity compared to positive control, quercetin. Geranium nepalense subsp. thunbergii extract showed a 98.33 % inhibition of DPPH radical at a concentration of $50\;{\mu}g/mL$. Quercetin showed a 78.05 % inhibition of DPPH radical at the same concentration. To investigate reactive oxygen species (ROS) scavenging activity, Geranium nepalense subsp. thunbergii extract was treated to human keratinocytes (HaCaT). $IC_{50}$ value of Geranium nepalense subsp. thunbergii extract was $43.22\;{\mu}g/mL$ and $IC_{50}$ value of quercetin was $102.35\;{\mu}g/mL$. Geranium nepalense subsp. thunbergii extract showed excellent antioxidant activity. Skin irritation test and cytotoxicity test suggested that Geranium nepalense subsp. thunbergii extract is a safe antioxidant ingredient for cosmetics.

The Phenolic Components of Sapium japonicum (사람주나무잎의 페놀성 성부)

  • Ahn, Yeong-Jin;Lee, Seung-Ho;Kang, Shin-Jung;Hwang, Bang-Yeon;Park, Woong-Yang;Ahn, Byung-Tae;Ro, Jai-Seup;Lee, Kyong-Soon
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.183-192
    • /
    • 1996
  • A chemical examination of the phenolic compounds in the leaves of Sapium japonicum(Euphorbiacesae) has led to the isolation of eleven phenolic compounds, containing five hydrolysable tannins and six flavonoids. On the basis of chemical and spectroscopic evidences, the structures of these compounds were confirmed to be gallic acid(1), 5-O-caffeoyl quinic acid(2), 1-O-galloyl-3,6-(R)-HHDP-${\beta}-_D$-glucose(corilagin)(3), 1-O-galloyl-2,4(R)-DHHDP-${\beta}-_D$-glucose(furosin)(4), 1-O-galloyl-2,4-(R)-DHHDP-3,6-(R)-HHDP-${\beta}-_D$-glucose(geraniin )(5), astragalin(6), trifolin(7), afzelin(8), quercetin(9), isoquercitrin(10) and rutin(11). Among them geraniin was the main component.

  • PDF

Phenolic Compounds from the Leaves of Homonoia riparia and their Inhibitory Effects on Advanced Glycation End Product Formation

  • Lee, Ik-Soo;Jung, Seung-Hyun;Kim, Chan-Sik;Kim, Jin Sook
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.274-280
    • /
    • 2017
  • In a search for novel treatments for diabetic complications from natural resources, we found that the ethyl acetate-soluble fraction from the 80% ethanol extract of the leaves of Homonoia riparia has a considerable inhibitory effect on advanced glycation end product (AGE) formation. Bioassay-guided isolation of this fraction resulted in identification of 15 phenolic compounds (1 - 15). These compounds were evaluated in vitro for inhibitory activity against the formation of AGE. The majority of tested compounds, excluding ethyl gallate (15), markedly inhibited AGE formation, with $IC_{50}$ values of $2.2-89.9{\mu}M$, compared with that of the positive control, aminoguanidine ($IC_{50}=962.3{\mu}M$). In addition, the effects of active isolates on the dilation of hyaloid-retinal vessels induced by high glucose (HG) in larval zebrafish was investigated; (-)-epigallocatechin-3-O-gallate (6), corilagin (7), and desmanthine-2 (11) significantly decreased HG-induced dilation of hyaloid-retinal vessels compared with the HG-treated control group.

Identification of Anti-Cancer Targets of Eco-Friendly Waste Punica granatum Peel by Dual Reverse Virtual Screening and Binding Analysis

  • Usha, Talambedu;Goyal, Arvind Kumar;Lubna, Syed;Prashanth, H.P.;Mohan, T. Madhan;Pande, Veena;Middha, Sushil Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10345-10350
    • /
    • 2015
  • Background: Punica granatum (family: Lythraceae) is mainly found in Iran, which is considered to be its primary centre of origin. Studies on pomegranate peel have revealed antioxidant, anti-inflammatory, anti-angiogenesis activities, with prevention of premature aging and reducing inflammation. In addition to this it is also useful in treating various diseases like diabetes, maintaining blood pressure and treatment of neoplasms such as prostate and breast cancer. Objectives: In this study we identified anti-cancer targets of active compounds like corilagin (tannins), quercetin (flavonoids) and pseudopelletierine (alkaloids) present in pomegranate peel by employing dual reverse screening and binding analysis. Materials and Methods: The potent targets of the pomegranate peel were annotated by the PharmMapper and ReverseScreen 3D, then compared with targets identified from different Bioassay databases (NPACT and HIT's). Docking was then further employed using AutoDock pyrx and validated through discovery studio for studying molecular interactions. Results: A number of potent anti-cancerous targets were attained from the PharmMapper server according to their fit score and from ReverseScreen 3D server according to decreasing 3D scores. Conclusion: The identified targets now need to be further validated through in vitro and in vivo studies.