• Title/Summary/Keyword: Corexit 9500

Search Result 2, Processing Time 0.018 seconds

Importance of Convergency Researches for the Appropriate Application of Oil Dispersant (오일분산제 적용을 위한 융합연구의 필요성)

  • Oh, Kyeongseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.181-187
    • /
    • 2018
  • The historical consumption of oil dispersant was recorded during the protection plans after huge oil spill occurred in the Gulf of Mexico in 2010. As a well-known oil dispersant, Corexit 9500 was used and continuously blamed for the negative effects on environmental ecology. Nevertheless, US EPA still recognizes Corexit 9500 as a future oil dispersant that might be possibly sprayed again to oil slick. In order to develop alternative oil dispersants, it is important to impel the convergency works mainly from microbiologist, ecologist, environmentalist, chemist, and chemical engineer. In this paper, the major components of Corexit 9500 were introduced by chemical structures and physical properties. Presented were also the biodegradable process of dispersed oils and the possible candidates of biosurfactants.

Biochemical toxicity of Corexit 9500 dispersant on the gills, liver and kidney of juvenile Clarias gariepinus

  • Ugbomeh, A.P.;Bob-manuel, K.N.O.;Green, A.;Taylorharry, O.
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.7
    • /
    • pp.15.1-15.8
    • /
    • 2019
  • Corexit 9500 is a dispersant commercially available in Nigeria that is used to change the inherent chemical and physical properties of oil, thereby changing the oil's transport and fate with potential effects on the environment. The aim of this study was to assess the biochemical (enzymes and electrolyte) toxicity of Corexit 9500 dispersant on the gills, liver and kidney of juveniles of Clarias gariepinus after exposure for 21 days. One hundred sixty fish were used without gender consideration. Range-finding tests were conducted over a 96-h period after acclimatisation of the test organisms in the laboratory. The test organisms (10/treatment) were exposed to Corexit 9500 in the following concentrations-0.00, 0.0125, 0.025 and 0.05 ml/l in triplicate. Twenty-one days later, fish was dissected. 0.5 g from each of the following organs-gills, liver and kidney tissues-was removed, homogenised and tested for enzymes [superoxide dismutase (SOD), catalase (CAT), alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP)], urea, creatinine and electrolytes (sodium ($Na^+$), potassium ($K^+$), chloride ($Cl^-$), bicarbonate ($HCO_3{^-}$)) following standard methods. In the gills, SOD and ALT to AST ratio were significantly lower than in control while the creatinine was significantly higher in the toxicant. In the kidney, creatinine was significantly higher in fish exposed to the toxicant. In the liver, ALP increased in the toxicant while urea was decreased. The mean electrolyte concentrations ($Na^+$, $K^+$, $Cl^-$ and $HCO_3{^-}$) increased significantly in the concentration of the toxicant (P < 0.05). The alterations observed in the activities of these electrolytes and enzymes indicated that Corexit 9500 interfered with transamination and metabolic functions of the fish.