• Title/Summary/Keyword: Core-shell $TiO_2$/Ag

Search Result 2, Processing Time 0.019 seconds

Synthesis of Ag/TiO2 Core/Shell Nanoparticles with Antibacterial Properties

  • Lin, Yue;Qiqiang, Wang;Xiaoming, Zhang;Zhouping, Wang;Wenshui, Xia;Yuming, Dong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2607-2610
    • /
    • 2011
  • Monodispersed Ag/$TiO_2$ core/shell nanoparticles were synthesized in solution via colloid-seeded deposition process using Ag nanoparticles as colloid seeds and $Ti(SO_4)_2$ as Ti-source respectively. Silver nitrate was reduced to Ag nanoparticles with $N_2H_4{\cdot}H_2O$ in the presence of CTAB as stabilizing agent. The titania sols hydrolyzed by the $Ti(SO_4)_2$ solution deposited on the surface of Ag nanoparticles to form the Ag/$TiO_2$ core/shell nanoparticles. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed low amount of Ag ion leaching from the Ag/$TiO_2$ core/shell nanoparticles. The Ag/$TiO_2$ core/shell nanoparticles indicated excellent antibacterial effects against Escherichia coli and maintained long-term antibacterial property.

Core-shell TiO2/Ag Nanoparticle Synthesis and Characterization for Conductive Paste (전도성 페이스트용 코어-쉘 TiO2/Ag 나노입자의 합성 및 특성 연구)

  • Sang-Bo, Sim;Jong-Dae, Han
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.36-44
    • /
    • 2023
  • Core-shell TiO2/Ag nanoparticles were synthesized by a modified sol-gel process and the reverse micelle method using acetoxime as a reducing agent in water/dodecylbenzenesulfonic acid (DDBA)/cyclohexane. The structure, shape, and size of the TiO2/Ag nanoparticles were investigated using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), and thermogravimetric analysis (TGA). The size of TiO2/Ag nanoparticles could be controlled by changing the [water]/[DDBA] molar ratio values. The size and the polydispersity of TiO2/Ag nanoparticles increased when the [water]/[DDBA] molar ratio rose. The resultant Ag nanoparticles over the anatase crystal TiO2 nanoparticles exhibited a strong surface plasmon resonance (SPR) peak at about 430 nm. The SPR peak shifted to the red side with the increase in nanoparticle size. Conductive pastes with 70 wt% TiO2/Ag nanoparticles were prepared, and the pastes were coated on the PET films using a screen-printing method. The printed paste films of the TiO2/Ag nanoparticles demonstrated greater surface resistance than conventional Ag paste in the range of 405~630 μΩ/sq.