• 제목/요약/키워드: Core-Pin

검색결과 124건 처리시간 0.137초

Nuclear Design Feasibility of the Soluble Boron Free PWR Core

  • Kim, Jong-Chae;Kim, Myung-Hyun;Lee, Un-Chul;Kim, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.342-352
    • /
    • 1998
  • A nuclear design feasibility of soluble boron free(SBF core for the medium-sized(600MWe) PWR was investigated. The result conformed that soluble boron free operation could be performed by using current PWR proven technologies. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with burnable poison and control rod absorber material. In order to control excess reactivity, large amount of gadolinia integral burnable poison rods were used and B4C was used as a control rod absorber material. For control of bottom shift axial power shape due to high temperature feedback in SBF core, axial zoning of burnable poison was applied to the fuel assemblies design. The combination of enrichment and rod number zoning for burnable poison could make an excess reactivity swing flat within around 1% and these also led effective control on axial power offset and peak pin power, The safety assessment of the designed core was peformed by the calculation of MTC, FTC and shutdown margin. MTC in designed SBF core was greater around 6 times than one of Ulchin unit 3&4. Utilization of enriched BIO(up to 50w1o) in B4C shutdown control rods provided enough shutdown margin as well as subcriticality at cold refueling condition.

  • PDF

다차원 노심열수력 현상이 소듐고속로 고유안전성에 미치는 영향 (Impact of Multi-dimensional Core Thermal-hydraulics on Inherent Safety of Sodium-Cooled Fast Reactor)

  • 권영민;정해용;하귀석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3175-3180
    • /
    • 2008
  • A metal-fueled pool-type liquid metal fast reactor (LMFR) provides large margins to sodium boiling and fuel damage under accident conditions. The favorable passive safety results are obtained by both a reactivity feedback mechanism in the core and a passive decay heat removal system. Among the various reactivity feedbacks, the ones by a thermal expansion of a radial dimension of the core and by the control rod drivelines are strongly dependent on the flow conditions in the core and the hot pool, respectively. The effects of multidimensional thermal hydraulic characteristics on these reactivity feedbacks are investigated by the system-wide safety analysis code SSC-K with advanced thermal hydraulics models. Particularly a detailed three dimensional thermal hydraulics reactor core model is integrated into SSC-K for use in a whole system analysis of the passive safety aspects of LMR designs. The model provides fuel and cladding temperatures for every fuel pin in a reactor and coolant temperatures for every coolant sub-channel in the reactor.

  • PDF

Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR) with PBO Reflector

  • Kim, Chihyung;Hartanto, Donny;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.351-359
    • /
    • 2016
  • The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구 (Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact)

  • 이호준;최시영;신태성;서현수
    • 한국산학기술학회논문지
    • /
    • 제21권5호
    • /
    • pp.648-655
    • /
    • 2020
  • 현대의 자동소총의 공이는 공이치기에 의해 타격을 받아 장전된 탄약의 뇌관을 기폭 시키는 역할을 한다. 이 과정에서 공이는 충격하중을 받게 되며 소총의 수명주기 동안 반복적인 힘을 받게 된다. 소총의 내구도 시험에서 전체의 96.26% 진행 중 공이가 조기에 파손되는 현상이 발생하였다. 이에 따라 원인분석과 재현시험을 통해 파손현상 사례연구를 실시하였다. 파손이 발생한 공이의 파단면을 현미경 및 SEM 분석결과 반복충격에 의해 표면 원주방향 전체에서 균열이 시작해 심부로 피로균열이 발생했다. 반복충격에 의해 균열이 성장하다 마지막에 피로파괴가 발생하였으며, 노치에 의한 것으로 추정되었다. 검증을 위해 원주방향 0.03mm의 노치를 생성한 공이로 재현시험결과 동일한 형태의 파단면을 가지면서 전체 수명의 64.25%에서 파손되었다. 파손사례연구를 위한 노치형태별 재현시험결과 한쪽 측면 노치 0.3mm, 0.5mm의 공이는 각각 65.53%, 50.76%에서, 6개 지점의 노치 0.03mm는 85.65%에서 파손되었다. 마지막으로 표면 거칠기가 거칠고 툴 마크가 육안으로 확인이 가능한 공이는 내구수명을 만족하며 381㎛의 내부균열이 진행되었다. 본 연구를 통해 노치형태별 파손에 대해 고찰하였으며, 반복충격을 받는 부품의 신뢰성 확보를 위해 노치와 표면 거칠기 품질관리가 중요한 것을 알 수 있다.

THREE-DIMENSIONAL FLOW PHENOMENA IN A WIRE-WRAPPED 37-PIN FUEL BUNDLE FOR SFR

  • JEONG, JAE-HO;YOO, JIN;LEE, KWI-LIM;HA, KWI-SEOK
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.523-533
    • /
    • 2015
  • Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

STATUS OF THE ASTRID CORE AT THE END OF THE PRE-CONCEPTUAL DESIGN PHASE 1

  • Chenaud, Ms.;Devictor, N.;Mignot, G.;Varaine, F.;Venard, C.;Martin, L.;Phelip, M.;Lorenzo, D.;Serre, F.;Bertrand, F.;Alpy, N.;Le Flem, M.;Gavoille, P.;Lavastre, R.;Richard, P.;Verrier, D.;Schmitt, D.
    • Nuclear Engineering and Technology
    • /
    • 제45권6호
    • /
    • pp.721-730
    • /
    • 2013
  • Within the framework of the ASTRID project, core design studies are being conducted by the CEA with support from AREVA and EDF. The pre-conceptual design studies are being conducted in accordance with the GEN IV reactor objectives, particularly in terms of improving safety. This involves limiting the consequences of 1) a hypothetical control rod withdrawal accident (by minimizing the core reactivity loss during the irradiation cycle), and 2) an hypothetical loss-of-flow accident (by reducing the sodium void worth). Two types of cores are being studied for the ASTRID project. The first is based on a 'large pin/small spacing wire' concept derived from the SFR V2b, while the other is based on an innovative CFV design. A distinctive feature of the CFV core is its negative sodium void worth. In 2011, the evaluation of a preliminary version (v1) of this CFV core for ASTRID underlined its potential capacity to improve the prevention of severe accidents. An improved version of the ASTRID CFV core (v2) was proposed in 2012 to comply with all the control rod withdrawal criteria, while increasing safety margins for all unprotected-loss-of-flow (ULOF) transients and improving the general design. This paper describes the CFV v2 design options and reports on the progress of the studies at the end of pre-conceptual design phase 1 concerning: - Core performance, - Intrinsic behavior during unprotected transients, - Simulation of severe accident scenarios, - Qualification requirements. The paper also specifies the open options for the materials, sub-assemblies, absorbers, and core monitoring that will continue to be studied during the conceptual design phase.

THREE-DIMENSIONAL CORE DESIGN OF A SUPER FAST REACTOR WITH A HIGH POWER DENSITY

  • Cao, Liangzhi;Oka, Yoshiaki;Ishiwatari, Yuki;Ikejiri, Satoshi;Ju, Haitao
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.47-54
    • /
    • 2010
  • The SuperCritical Water-cooled Reactor (SCWR) pursues high power density to reduce its capital cost. The fast spectrum SCWR, called a super fast reactor, can be designed with a higher power density than thermal spectrum SCWR. The mechanism of increasing the average power density of the super fast reactor is studied theoretically and numerically. Some key parameters affecting the average power density, including fuel pin outer diameter, fuel pitch, power peaking factor, and the fraction of seed assemblies, are analyzed and optimized to achieve a more compact core. Based on those sensitivity analyses, a compact super fast reactor is successfully designed with an average power density of 294.8 W/$cm^3$. The core characteristics are analyzed by using three-dimensional neutronics/thermal-hydraulics coupling method. Numerical results show that all of the design criteria and goals are satisfied.

Development and validation of fuel stub motion model for the disrupted core of a sodium-cooled fast reactor

  • Kawada, Kenichi;Suzuki, Tohru
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3930-3943
    • /
    • 2021
  • To improve the capability of the SAS4A code, which simulates the initiating phase of core disruptive accidents for MOX-fueled Sodium-cooled Fast Reactors (SFRs), the authors have investigated in detail the physical phenomena under unprotected loss-of-flow (ULOF) conditions in a previous paper (Kawada and Suzuki, 2020) [1]. As the conclusion of the last article, fuel stub motion, in which the residual fuel pellets would move toward the core central region after fuel pin disruption, was identified as one of the key phenomena to be appropriately simulated for the initiating phase of ULOF. In the present paper, based on the analysis of the experimental data, the behaviors related to the stub motion were evaluated and quantified by the author from scratch. A simple model describing fuel stub motion, which was not modeled in the previous SAS4A code, was newly proposed. The applicability of the proposed model was validated through a series of analyses for the CABRI experiments, by which the stub motion would be represented with reasonable conservativeness for the reactivity evaluation of disrupted core.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.