• 제목/요약/키워드: Core-A

검색결과 17,121건 처리시간 0.048초

FRACTURE TOUGHNESS OF VARIOUS CORE MATERIALS

  • Lee Shin-Won;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk;Lee Jai-Bong
    • 대한치과보철학회지
    • /
    • 제39권6호
    • /
    • pp.682-697
    • /
    • 2001
  • This investigation evaluated the fracture toughness($K_{IC}$) of eight currently available core materials, and relate the fracture toughness value to fractography analysis and surface characteristics using a atomic force microscope (AFM). Single-edge notched (SEN) test specimens (n=10) and compact tension (CT) test specimens (n=10) were prepared conforming to the ASTM Standard E-399 for a high copper amalgam, three composite core materials (Core-Max II, Core Paste, Bisfil Core), two reinforced composite core materials (Ti-Core, Ti-Core Natural), a resin-modified glass ionomer core material (Vitremer), and a conventional glass ionomer core material (Ketac-Molar). The specimens were tested with an Instron Universal Testing Machine. The maximum loads were measured to calculate the fracture toughness ($K_{IC}$). Thereafter, fracture surfaces of SEN specimens of each material were investigated for fractography analysis using scanning electron microscope. And, disc-shaped specimens with 1mm thickness were fabricated for each material and were investigated under AFM for surface morphology analysis. The results were as follows: 1. Bisfil Core showed the highest mean fracture toughness regardless of test methods. 2. For the tooth-colored materials, Ti-Core Natural exhibited the highest fracture toughness. 3. Ketac Molar showed a significantly low fracture toughness when compared with the amalgam and the composite resin core materials(p<0.05). 4. The fracture toughness values obtained with the single-edge notched test, except Ketac Molar, were higher than those obtained in the compact tension test. 5. SEM revealed that the fracture surface of high fracture toughness material was rougher than that of low fracture toughness material. 6. AFM revealed that the surface particles of the composite resins were smaller in size, with a lower surface roughness than the glass ionomer core materials.

  • PDF

유도전동기 회전자 제작시 압입작업 평가 (Evaluations of Swaging Process for Rotor Core of Induction Motors)

  • 박상철
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.21-26
    • /
    • 2016
  • 산업체에서 널리 사용되고 있는 유도전동기의 회전자를 제작하기 위하여 rotor core slot에 Cu bar를 열박음(shrinkage fit)작업으로 고정한 후 bar 표면을 punch로 원주방향으로 순차적으로 1.5~3mm 압입(swaging)작업시 rotor core slot과 bar 접촉면에 작용하는 contact tangential force의 크기와 분포를 단순화된 2차원 plane strain 해석모델을 사용하여 각각의 압입조건에 대하여 평가하였으며 또한 생산성 향상을 고려한 rotor core slot 설계시 slot 형상에 따른 접촉력 분포를 평가하여 rotor core slot 설계시 필요한 정보를 제공하고자 수치해석적인 방법을 사용하여 parametric study를 수행하였다. 이러한 탄소성 수치해석 결과 1) rotor core 압입작업시 bar 접촉면에 작용하는 contact force는 소성변형이 먼저 발생하는 bar 상부에 크게 작용하며 2) 순차적인 rotor core 압입작업시 bar 접촉면에 작용하는 total contact force는 바로 인접한 bar에 대한 압입작업에 의해서만 영향을 받으며 그 영향으로 약 55% 정도 total contact force가 증가하며 3) 생산성을 고려하여 rotor core를 설계하는 경우에 contact force를 증가시키기 위해서는 core slot의 폭보다 길이를 길게 하는 것이 바람직하다는 사실을 알 수 있었다.

Experimental and Numerical Analysis of a Simple Core Loss Calculation for AC Filter Inductor in PWM DC-AC Inverters

  • Lee, Kyoung-Jun;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.113-121
    • /
    • 2013
  • This paper introduces a simple core loss calculation method for output filter inductor in pulse width modulation (PWM) DC-AC inverter. Amorphous C-core (AMCC-320) is used to analyze the core loss. In order to measure core loss of the output filter inductor and validate the proposed method, a single-phase half-bridge inverter and a calorimeter are used. By changing switching frequency and modulation index (MI) of the inverter, core loss of the AMCC-320 is measured with the lab-made calorimeter and the results are compared with calculated core loss. The proposed method can be easily extended to other core loss calculation of various converters.

사다리꼴 분포를 갖는 segmented core 단일모드 광섬유의 전파특성에 대한 연구 (A Study on the Propagation Characteristics of a Trapezoidal-Shaped Segmented Core Single Mode Fiber)

  • 김성근;최태일;최병하
    • 한국통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.816-822
    • /
    • 1992
  • 본 논문에서는 중심코어가 사다리꼴분포를 갖는 segmented core 단일모드 광섬유의 전파특성을 \ulcorner=1.55um에서 영분산을 만족하는 조건하에서 상대 굴절율차비의 변화에 대해 이론적으로 조사하였다. 기존의 광섬유(삼각형 굴정율, 이중형 코어)와 곡률손실을 비교한 결과 크게 감소함을 확인하였다. 그리고 코어내의 모드필드의 집속효과가 기존의 사다리꼴 굴절율 광섬유보다 28% 더 향상되었다. 기존의 삼각형 분포를 갖는 segmented core 광섬유와 비교하여 여러 장점들을 제시 하였다.

  • PDF

Yttrium이 첨가된 BaTiO3에서 형성된 core/shell 구조에서 shell의 TCC 거동: 독립적 관찰 (TCC behavior of a shell phase in core/shell structure formed in Y-doped BaTiO3: an individual observation)

  • 전상채
    • 한국결정성장학회지
    • /
    • 제30권3호
    • /
    • pp.110-116
    • /
    • 2020
  • MLCC(Multi-Layer Ceramic Capacitor)의 유전체 층에 사용되는 BaTiO3 입자는 안정한 TCC(Temperature Characteristics of Capacitance) 거동을 갖기 위해 core/shell 구조를 갖는다. 지금까지 shell의 특성은 core/shell 구조의 전체 특성에서 유추해 왔다. 이는 core/shell 구조가 겨우 수 ㎛의 작은 크기로 shell 특성만 구별해서 측정하기가 어렵기 때문이다. 본 실험에서는 micro-contact법을 이용하여 확산쌍 시편의 계면에 형성된 확대된 core/shell 구조에 Pt 전극을 증착하여 35~135℃ 에서 shell 영역의 독립적인 TCC 거동을 측정하였다. 그 결과, 65℃에서 최대 유전율 값을 갖는 완만한 피크의 확산 상전이(Diffusion Phase Transition) 거동인 core의 특성과 구별되는 거동을 관찰하였으며, 이는 core/shell 구조의 온도-유전거동을 묘사하는 모델링에서 실험 자료로 활용될 것으로 본다.

The Impact of Grit on University Student's Core Competency in Dental Hygiene Students

  • Park, Soo-Auk;Cho, Young-Sik
    • 치위생과학회지
    • /
    • 제19권3호
    • /
    • pp.170-180
    • /
    • 2019
  • Background: Recently, competency-based education has been reorganized in the dental hygiene curriculum. In education, non-cognitive factors are emphasized. Grit, the non-cognitive ability to persevere to achieve an individual's long-term goals, is emerging. This study aims to identify the degree of grit and core competencies in students and to investigate the relationship between them and the factors that affect these core competencies. Methods: This study was conducted using 350 dental hygiene students who were randomly assigned a structured questionnaire to complete. The final analysis included 321 students. The survey contents evaluated grit, core competencies, and general characteristics. The difference in the degree of grit and core competencies in conjunction with the general characteristics of the subjects was analyzed using the t-test/Mann Whitney U-test and the ANOVA/Kruskal-Wallis H test. Multiple regression analysis was then conducted to determine the factors affecting the core competencies of the subjects. Results: The difference of 'grit' according to general characteristics was statistically significant in 'major satisfaction', 'relationship', 'perceived academic achievement', 'grade point average (GPA)'. The difference in 'core competency' according to general characteristics was statistically significant in 'grade', 'department selection', 'major satisfaction', 'relationship', 'perceived academic achievement', 'GPA'. Among the sub-areas of 'grit', 'perseverance of effort' showed a high correlation with 'core competency' and was statistically significant. As a result of regression analysis, 'major satisfaction', 'perceived academic achievement' and 'grit' of dental hygiene students had a statistically significant influence on 'core competency'. Meanwhile, 'GPA' was not seen to be statistically significant in 'core competency'. Conclusion: Grit, a non-cognitive factor, had a statistically significant effect on core competency, while the effects on GPA, a cognitive factor, were not statistically significant. Among the sub-factors of grit, 'perseverance of effort' had a statistically significant effect on 'problem-solving competency' and 'academic competency', which are 'core competency' sub factors.

Applicability of the Krško nuclear power plant core Monte Carlo model for the determination of the neutron source term

  • Goricanec, Tanja;Stancar, Ziga;Kotnik, Domen;Snoj, Luka;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3528-3542
    • /
    • 2021
  • A detailed geometrical model of a Krško reactor core was developed using a Monte Carlo neutron transport code MCNP. The main goal of developing an MCNP core model is for it to be used in future research focused on ex-core calculations. A script called McCord was developed to generate MCNP input for an arbitrary fuel cycle configuration from the diffusion based core design package CORD-2, taking advantage of already available material and temperature data obtained in the nuclear core design process. The core model was used to calculate 3D power density profile inside the core. The applicability of the calculated power density distributions was tested by comparison to the CORD-2 calculations, which is regularly used for the nuclear core design calculation verification of the Krško core. For the hot zero power and hot full power states differences between MCNP and CORD-2 in the radial power density profile were <3%. When studying axial power density profiles the differences in axial offset were less than 2.3% for hot full power condition. To further confirm the applicability of the developed model, the measurements with in-core neutron detectors were compared to the calculations, where differences of 5% were observed.

공과대학생의 핵심역량 분석과 비교과 활동의 활용 (Analysis of Core Competencies in Engineering Students and Utilization of Extracurricular Activities)

  • 황순희
    • 공학교육연구
    • /
    • 제21권6호
    • /
    • pp.63-73
    • /
    • 2018
  • This research aims to analyze core competencies of engineering students in Korea as well as to explore the application plans of extracurricular activities(hereafter, ECA) and programs in order to enhance their core competencies. Participation in ECA has long been recognized as having positive benefits and impacts upon students. To achieve the purpose of this study, first, we investigated whether there were differences between core competencies in undergraduates according to majors, gender and grades. 'Core competencies', first introduced in management theory as 'core competency' can be defined as personal attributes or underlining characteristics, capable of delivering a role or job. 'Core competencies' has received particular attention in recent years and there has been much related research (domestic and foreign) combined with diverse factors. However, few studies have addressed the question on engineering student's core competencies as well as the ways of their enhancement. This study was conducted with a total of 286 students, and core competencies have been measured online, through K-CESA. Our findings show that firstly, there were significant differences in undergraduate students' core competencies by majors. Engineering students scored significantly lower in core competencies overall. Second, there was no significant difference in students' core competencies by gender and grade. Third, there was a significant correlation among components of core competencies. Finally, there was a significant correlation between core competencies and grades(GPA, grades in major subject & liberal arts subject), rather levels in the correlation were low. Furthermore, the study suggested that the appropriate application of extracurricular activities would enhance core competencies of students.

Design of an Air-Core HTS quadruple triplet for a heavy ion accelerator

  • Zhang, Zhan;Wei, Shaoqing;Lee, Sangjin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권4호
    • /
    • pp.35-39
    • /
    • 2016
  • In recent years, high-temperature superconductor (HTS) Quadruple Triplets are being developed for heavy ion accelerators, because the HTS magnets are suitable to withstand radiation and high heat loads in the hot cell of accelerators. Generally, an iron yoke, which costs a mass of material, was employed to enhance the magnetic field when a quadrupole magnet was designed. The type of the magnet is called iron-dominated magnet, because the total magnetic field was mainly induced by the iron. However, in the HTS superconductor iron-dominated magnets, the coil-induced field also can have a certain proportion. Therefore, the air-core HTS quadrupole magnets can be considered instead of the iron-core HTS quadrupole magnet to be employed to save the iron material. This study presents the design of an air-core HTS quadruple triplet which consists three by air-core HTS quadruple magnet and compare the design result with that of an iron-core HTS quadruple triplet. First, the characteristics of an air-core HTS quadrupole magnet were analyzed to select the magnet system for the magnetic field uniformity impairment. Then, the field uniformity was improved(< 0.1%) exactly using evolution strategy (ES) method for each iron-core HTS quadrupole magnet and the air-core HTS quadruple triplet was established. Finally, the designed air-core triplet was compared with the iron-core HTS quadruple triplet, and the results of beam trajectories were presented with both the HTS quadruple triplet systems to show that the air-core triplet can be employed instead of the iron-core HTS triplet. The design of the air-core quadruple triplet was suggested for a heavy ion accelerator.

ETS: Efficient Task Scheduler for Per-Core DVFS Enabled Multicore Processors

  • Hong, Jeongkyu
    • Journal of information and communication convergence engineering
    • /
    • 제18권4호
    • /
    • pp.222-229
    • /
    • 2020
  • Recent multi-core processors for smart devices use per-core dynamic voltage and frequency scaling (DVFS) that enables independent voltage and frequency control of cores. However, because the conventional task scheduler was originally designed for per-core DVFS disabled processors, it cannot effectively utilize the per-core DVFS and simply allocates tasks evenly across all cores to core utilization with the same CPU frequency. Hence, we propose a novel task scheduler to effectively utilize percore DVFS, which enables each core to have the appropriate frequency, thereby improving performance and decreasing energy consumption. The proposed scheduler classifies applications into two types, based on performance-sensitivity and allows a performance-sensitive application to have a dedicated core, which maximizes core utilization. The experimental evaluations with a real off-the-shelf smart device showed that the proposed task scheduler reduced 13.6% of CPU energy (up to 28.3%) and 3.4% of execution time (up to 24.5%) on average, as compared to the conventional task scheduler.