• Title/Summary/Keyword: Core wall

Search Result 457, Processing Time 0.027 seconds

Preparation and Evaluation of Sustained Release Aspirin Microcapsules Using Eudragit $RS^{\circledR}$ Polymer (Eudragit $RS^{\circledR}$를 이용한 지속 방출형 아스피린 마이크로캅셀의 제조 및 평가)

  • Chun, In-Koo;Shin, Dong-Won
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.26-39
    • /
    • 1988
  • Eudragit $RS^{\circledR}$ polymer was used as a wall material for the microencapsulation of aspirin by a phase separation method from chloroform-cyclohexane system with 5% polyisobutylene (PIB) in cyclohexane, and microcapsules obtained were evaluated by particle size analysis, scanning electron microscopy (SEM), drug release and drug stability test. With PIB as a coacervation inducing agent, smooth and tight microcapsules with less aggregation were obtained. Below 1 : 0.3 core-wall ratio, it was possible to coat individual particle. Variation of production conditions showed that increasing the proportion of wall material, particle size and wall thickness of microcapsules and the concentration of paraffin wax in cyclohexane as a sealant sustained drug release rates effectively. SEM confirmed that larger microcapsules after drug release did not rupture into smaller particles but contained a few small pores on the surface. Aspirin release from Eudragit $RS^{\circledR}$ coated microcapsules was independent of the pH of medium, and the mechanism of drug release from non-sealed and sealed microcapsules appeared to fit Higuchi matrix model kinetics. Aspirin in the mixture of aspirin microcapsules and sodium bicarbonate was by far more stable than that in the mixture of pure aspirin and sodium bicarbonate.

  • PDF

Condition assessment of fire affected reinforced concrete shear wall building - A case study

  • Mistri, Abhijit;Pa, Robin Davis;Sarkar, Pradip
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.89-105
    • /
    • 2016
  • The post - fire investigation is conducted on a fire-affected reinforced concrete shear wall building to ascertain the level of its strength degradation due to the fire incident. Fire incident took place in a three-storey building made of reinforced concrete shear wall and roof with operating floors made of steel beams and chequered plates. The usage of the building is to handle explosives. Elevated temperature during the fire is estimated to be $350^{\circ}C$ based on visual inspection. Destructive (core extraction) and non-destructive (rebound hammer and ultrasonic pulse velocity) tests are conducted to evaluate the concrete strength. X-ray diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) are used for analyzing micro structural changes of the concrete due to fire. Tests are conducted for concrete walls and roof slab on both burnt and unburnt locations. The analysis of test results reveals no significant degradation of the building after the fire which signifies that the structure can be used with full expectancy of performance for the remaining service life. This document can be used as a reference for future forensic investigations of similar fire affected concrete structures.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

Transient Simulations of Concrete Ablation due to a Release of Molten Core Material (방출된 노심용융 물질에 의한 콘크리트 침식 천이 모의)

  • Kim, H.Y.;Park, J.H.;Kim, H.D.;Kim, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3491-3496
    • /
    • 2007
  • If a molten core is released from a reactor vessel into a reactor cavity during a severe accident, an important safety issue of coolability of the molten core from top-flooding and concrete ablation due to a molten core concrete interaction (MCCI) is still unresolved. The released molten core debris would attack the concrete wall and basemat of the reactor cavity, which will lead to inevitable concrete decompositions and possible radiological releases. In a OECD/MCCI project scheduled for 4 years from 2002. 1 to 2005. 12, a series of tests were performed to secure the data for cooling the molten core spread out at the reactor cavity and for the 2-D long-term core concrete interaction (CCI). The tests included not only separate effect tests such as a melt eruption, water ingression, and crust failure tests with a prototypic material but also 2-D CCI tests with a prototypic material under dry and flooded cavity conditions. The paper deals with the transient simulations on the CCI-2 test by using a severe accident analysis code, CORQUENCH, which was developed at Argonne National Laboratory (ANL). Similar simulations had been already per for me d by using MELCOR 1.8.5 code. Unlike the MELCOR 1.8.5, the CORQUENCH includes a melt eruption mode I and a newly developed water ingression model based on the water ingression tests under the OECD/MCCI project. In order to adjust the geometrical differences between the CCI-2 test (rectangular geometry) and the simulations (cylindrical geometry), the same scaling methodology as used in the MELCOR simulation was applied. For the direct comparison of the simulation results, the same inputs for the MELCOR simulation were used. The simulation results were compared with the previous results by using MELCOR 1.8.5.

  • PDF

Two-dimensional isotropic patterns for core materials in applications to sandwich structures (샌드위치 구조물 내에서의 응용과 관련된 2차원 단위 셀 형상을 지닌 심재에 대한 연구)

  • Kim, Beom-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.82-90
    • /
    • 2004
  • The mechanical characteristics of three types of core with two-dimensional isotropic patterns-triangular, hexagonal and starcell-were studied in applications to sandwich structures. The Young's modulus and shear modulus were calculated for the three core types in the direction normal to the faces. The compressive buckling strength and shear buckling strength were calculated by modeling each cell wall of the core as a plate under compressive or shear load. To verify this model, tests were conducted on scaled specimens to measure the compressive buckling strength of each core. The bending flexibilites of the three cores were also studied. Compliances for the three cores were measured using biaxial flexural tests. The three isotropic core patterns exhibited distinct characteristics. In the direction normal to the faces, all three cores had the same stiffness. However, the starcell core exhibited high flexibility compared to the other cores, indicating potential for application to curved sandwich structures.

High prandtl number natural convection in a low-aspect ratio rectangular enclosure (종횡비 가 낮은 직각밀폐용기내 의 Prandtl 수 가 큰 유체 의 자연대류 에 관한 실험적 연구)

  • 이진호;황규석;현명택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.750-756
    • /
    • 1985
  • Experimental investigation was carried out to study the natural convection of water and silicon oil due to end temperature differences in a horizontally insulated rectangular enclosure of aspect ratio 0.1 with a special attention on the core configuration in the laminar boundary-layer flow regime. Rayleigh number ranges covered herein are Ra=4.40 * 10$^{6}$ -9.64 * 10$^{7}$ for water and Ra=1.69*10$^{5}$ -3.80*10$^{6}$ for silicon oil, respectively. In the case of water, for Ra.geq.2.21 * 10$^{7}$ there appeared distinct horizontal thermal layers adjacent to the horizontal boundaries in the core and the temperature distribution outside the horizontal thermal layers, i.e., in the mid-core region, is vertically stratified. The core flow pattern was shown to be nonparallel with a weak back flow in the mid-core for Ra.geq.3.63 *10$^{7}$ . In the case of silicon oil, distinct horizontal thermal layers appeared along the core horizontal boundaries for Ra.geq.1.27 * 10$^{6}$ with a stratified temperature distribution in the mid-core, but the core flow pattern in this case was shown to be parallel. In addition, secondary flow appeared near the hot wall for Ra.geq.3.80 * 10$^{6}$ . Nusselt number, Nu, was found to be proportional to R $a^{0.3}$ for water and R $a^{0.28}$ for silicon oil in the boundary-layer flow regime. There also in an indication from the comparison with other results that Nu is independent of aspect ratio for water in the boundary-layer flow regime in low aspect ratio enclosures.res.

A Study on the Characteristics of the Stack Effect Occurs in Independent Core Type's Office Building (독립코어형 오피스 빌딩의 연돌효과 발생특성에 관한 연구)

  • Song, Cha-Won;Chung, Kwang-Seop;Jang, Hyun-Mun;Youn, Jeung-Eun;Lim, Tae-Sub
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.145-152
    • /
    • 2016
  • For a general office building having a center core, the distinction between the outer wall and the compartment should be clear, and it should be set at a stack effect pressure distribution acting on the respective compartment by a relative area ratio of the respective leak compartment. In the case of office buildings with an independent core for core there, some blocks of shares and exterior pressure distribution in buildings and office buildings typically have different characteristics. Therefore, if the stack effect reduction measures, designed on the basis of a general office building are applied to a stand-alone building, the core of the building should reflect the unique pressure distribution characteristics. This study, performed as part of the object corresponding to the flat plan of the building in the diversification trend, analyzed the stack effect that actually occurs in an office building having the properties intended for stand-core construction, and thus on the basis of and tested by the method of using a conventional stack effect reduction measures. Reviewed in the study, an independent cored office building that does not have the air flow path through the specific space with respect to the center core type office building has a feature, and the variation in characteristics of the pressure distribution inside the building according to this air flow path stack effect was reduced by a variety of measures that should be applied to determine the application.

A Fundamental Study on the Influence of Performance of Cementitious Composites of Inorganic Core Material for Self-Healing Capsule of Cracks (균열 자기치유를 위한 캡슐용 무기계 코어재료의 시멘트 복합체 성능에 미치는 영향에 관한 기초적 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Choi, Byung-Keol;Kim, Cheol-Gyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.74-82
    • /
    • 2017
  • In this study, we prepared a core material based on the inorganic materials in liquid form for applying an inorganic-based core material to a core material for the self-healing capsules as a part of the basic study to manufacture of self-healing capsule that can heal cracks of cementitious composite. Manufactured core material based on the inorganic materials were applied directly to the cement composite before its encapsulation, were evaluated the effect on performance of cementitious composite as wall as repair performance of the cracks in the cracks. The test results showed that core material based on the inorganic materials was effective to improve the compressive and adhesion strength, had an absorption, permeation water, penetration of chloride iones and freeze-thaw resistance performance. Through the results of this paper, we want to utilize the results as a basis data of the performance of the cement composite that can be obtained when applied to inorganic core materials based on self-healing capsules and future advances localized self-healing capsule technology.

The Study on Cutting-off the Leachate Leakage or Infiltration from Waste Landfill by Wall Mass Constructed in Underground (지중 시공 벽체의 매립장 침출수 차단성 연구)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.27-34
    • /
    • 2018
  • The effect of cutting-off the leakage was identified by the cement based wall mass constructed in underground, as complete facilities for reinforcement in shear strength of landfill which was subjected to circular failure and for cutting-off the leachate from the costal waste landfill. By (1) visual inspection after underground excavating and (2) compressive strength test for core of underground wall, it could be identified that quality of wall mass constructed in underground was so effective, and by additional test, so as (3) in-situ permeability test in the hole after coring wall mass, (4) analyzing the characteristics of basic components and their profiles through the series of chemical experiments and (5) deciding the general distribution patterns from the chromatograms using GC-MS, it could be identified that watertight and cutting-off the leachate of wall mass constructed in underground was very effective. Therefore, it is concluded that five types of tests suggested in this study can judge the effect of cutting-off the leakage or infiltration of very high concentrated leachate from the waste landfill.

The Method of Certificating Waterproof Effect for Consecutive Column-Wall Mass in Underground (주열식 지중연속벽체의 차수효과 확인 방안)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.5-9
    • /
    • 2017
  • On the flow of groundwater, the effect of consecutive column-wall in underground as a hydraulic barrier could be identified by conventional geotechnical methods ((1)visualiy identification of wall mass after underground excavating, (2)uniaxial compressive strength test for core of wall mass in underground, (3)in-situ permeability test in the hole after coring wall mass). However, for the cut off the leakage or infiltration of very high concentrated leachate from the waste landfill or the contaminated groundwater, the waterproof effect of consecutive column-wall in underground should be verified more objectively, by in-situ measuring of pH, temperature and salinity. and by evaluating of their consistency and similarity throughout analyzing the characteristics of basic components and their profiles through the series of chemical experiments. Furthermore, its waterproof effect could be verified additionally throughout deciding the similarity more simply by comparing the general distribution patterns including the difference of high and low peaks from the chromatograms using GC-MS for surrounding groundwater.