• Title/Summary/Keyword: Core shroud

Search Result 12, Processing Time 0.016 seconds

Dynamic characteristics assessment of reactor vessel internals with fluid-structure interaction

  • Je, Sang Yun;Chang, Yoon-Suk;Kang, Sung-Sik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1513-1523
    • /
    • 2017
  • Improvement of numerical analysis methods has been required to solve complicated phenomena that occur in nuclear facilities. Particularly, fluid-structure interaction (FSI) behavior should be resolved for accurate design and evaluation of complex reactor vessel internals (RVIs) submerged in coolant. In this study, the FSI effect on dynamic characteristics of RVIs in a typical 1,000 MWe nuclear power plant was investigated. Modal analyses of an integrated assembly were conducted by employing the fluid-structure (F-S) model as well as the traditional added-mass model. Subsequently, structural analyses were carried out using design response spectra combined with modal analysis data. Analysis results from the F-S model led to reductions of both frequency and Tresca stress compared to those values obtained using the added-mass model. Validation of the analysis method with the FSI model was also performed, from which the interface between the upper guide structure plate and the core shroud assembly lug was defined as the critical location of the typical RVIs, while all the relevant stress intensities satisfied the acceptance criteria.

Proposal for CVAP of First Plant of APR+ NPP (APR+원전 최초 호기의 CVAP 수행에 대한 제언)

  • Kim, Dong-Hak;Ko, Do-Young;Kim, Maan-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.399-401
    • /
    • 2014
  • The comprehensive vibration assessment program(CVAP) of APR+ nuclear power plant(NPP) is classified as non-prototype, category II with Palo Verde NPP as valid prototype. In this paper, CVAP for first plant of APR+ NPP is proposed. The Control Element Assembly(CEA) shroud of APR+ NPP is different from that of Palo Verde NPP. And the Core Support Barrel(CSB) outer diameter and the flow rate of normal operation of APR+ NPP are larger than those of Palo Verde NPP. Vibration and stress analysis program should be conducted to establish test acceptance criteria. Limited vibration measurement program should be implemented to establish the margin of safety, demonstrate the satisfaction of test acceptance criteria and confirm the similar vibratory response between the APR+ and Palo Verde NPP. Because of the change of normal operation condition, the nominal differences between APR+ and Palo Verde NPP in the structural and hydraulic analysis are studied to determine the measurement locations.

  • PDF