• Title/Summary/Keyword: Core resin

Search Result 223, Processing Time 0.021 seconds

Fabrication of a custom polyetherketoneketone post-and-core with digital technology

  • Ju-Hyoung Lee;Gyu-Heon Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.1
    • /
    • pp.15-19
    • /
    • 2024
  • An ideal post material should have physical properties similar to those of dentin. Post materials with high elastic moduli may cause root fractures. This clinical report describes the treatment of a severely damaged tooth using a recently introduced material. Polyetherketoneketone (PEKK) is a semicrystalline high-performance thermoplastic polymer. PEKK is a promising material for custom post-and-core fabrication because of its elasticity close to that of dentin, good shock absorbance, machinability, and low cost. A laboratory scanner was used to digitize the conventional impression of a severely damaged maxillary right first molar. A custom PEKK post-and-core was designed and milled using computer-aided design and computer-aided manufacturing technology. Using the proposed technique, a custom PEKK post-and-core was fabricated accurately and human error was reduced. Restoration was luted with resin cement. Custom PEKK post-and-core restorations are a viable alternative for treating severely damaged teeth.

A STUDY ON THE FRACTURE STRENGTH OF TEETH RESTORED WITH A CARBON FIBER POST UNDER CYCLIC LOADING (반복하중하에서의 carbon fiber post의 파절강도에 관한 연구)

  • Yi, Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.640-649
    • /
    • 2000
  • In the restoration of endodontically treated teeth, carbon fiber post was recently introduced. The purpose of this in vitro study was to investigate the fracture strength of teeth restored with a pre-fabricated carbon fiber post in comparison with teeth restored with a prefabricated titanium post & custom cast gold post after cyclic loading in the different environment. A total of 30 recently extracted human central incisors of similar dimension with crowns removed were used. All teeth were placed into acrylic blocks and every steps for post and core fabrication were made accord-ing to manufacture's instruction. The post length and core dimensions were standardizd. All teeth were divided into 6 groups: 1) carbon fiber post / atmosphere, 2) titanium post / atmosphere, 3) gold post / atmosphere, 4) carbon fiber post / wet, 5) titanium post / wet, 6) gold post / wet. Carbon fiber post and titanium post were cemented in place using resin cement and cores were fabricated with Ti-Core. Custom cast gold post was made from Duralay pattern resin and cemented using resin cement, too. All specimens were thermocycled 10,000 times. After 50,000 cyclic loading, failure strength was measured using Instron testing machine. Kruskal-Wallis test followed by Mann-Whitney test was used to compare the mean fracture strength. Results were as follows : 1. All specimens showed lower fracture strength in wet environment after cyclic loading than in atmosphere condition, but did not reveal a significant difference. 2. There was no significant difference between carbon fiber post specimen and titanium post specimen in the same environment. 3. Gold cast post specimen showed significant different greater fracture strength than those of others in the same environment. 4. Carbon fiber post specimen showed no root fracture.

  • PDF

A Study for the Characteristic Changes under the Repeated Thermal Exposure in the Process of Repairing Aircraft Sandwich Structures (항공기용 복합재 샌드위치부품의 수리시 열간노출에 따른 물성변화에 관한 연구)

  • 최병근;김돈원;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.105-110
    • /
    • 2001
  • Autoclave curing using the vacuum bagging method is widely used for the manufacture of advanced composite prepreg airframe structures. Due to increasing use of advanced composites, specific techniques have been developed to repair damaged composite structures. In order to repair the damaged part, it is required that the damaged areas be removed, such as skin and/or honeycomb core, by utilizing the proper method and then repairing the area by laying up prepreg (and core) then curing under vacuum using the vacuum bagging materials. It shall be cured either in an oven or autoclave per the original specification requirements. Delamination can be observed in the sound areas during and/or after a couple times exposure to the elevated curing temperature due to the repeated repair condition. This study was conducted for checking the degree of degradation of properties of the cured parts and delamination between skin prepreg and honeycomb core. Specimens with glass honeycomb sandwich construction and glass/epoxy prepreg were prepared. The specimens were cured 1 to 5 times at $260^{circ}F$ in an autoclave and each additionally exposed 50, 100 and 150 hours in the $260^{circ}F$ oven. Each specimen was tested for tensile strength, compressive strength, flatwise tensile strength and interlaminar shear strength. To monitor the characteristics of the resin itself, the cured resin was tested using DMA and DSC. As a results, the decrease of Tg value were observed in the specific specimen which is exposed over 50 hrs at $260^{circ}F$. This means the change or degradative of resin properties is also related to the decrease of flatwise tensile properties. Accordingly, minimal exposure on the curing temperature is recommended for parts in order to prevent the delation and maintain the better condition.

  • PDF

Effect of chlorhexidine application on the bond strength of resin core to axial dentin in endodontic cavity

  • Kim, Yun-Hee;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.207-214
    • /
    • 2012
  • Objectives: This study evaluated the influence of chlorhexidine (CHX) on the microtensile bonds strength (${\mu}TBS$) of resin core with two adhesive systems to dentin in endodontic cavities. Materials and Methods: Flat dentinal surfaces in 40 molar endodontic cavities were treated with self-etch adhesive system, Contax (DMG) and total-etch adhesive system, Adper Single Bond 2 (3M ESPE) after the following surface treatments: (1) Priming only (Contax), (2) CHX for 15 sec + rinsing + priming (Contax), (3) Etching with priming (Adper Single Bond 2), (4) Etching + CHX for 15 sec + rinsing + priming (Adper Single Bond 2). Resin composite build-ups were made with LuxaCore (DMG) using a bulk method and polymerized for 40 sec. For each condition, half of specimens were submitted to ${\mu}TBS$ after 24 hr storage and half of them were submitted to thermocycling of 10,000 cycles between $5^{\circ}C$ and $55^{\circ}C$ before testing. The data were analyzed using ANOVA and independent t-test at a significance level of 95%. Results: CHX pre-treatment did not affect the bond strength of specimens tested at the immediate testing period, regardless of dentin surface treatments. However, after 10,000 thermocycling, all groups showed reduced bond strength. The amount of reduction was greater in groups without CHX treatments than groups with CHX treatment. These characteristics were the same in both self-etch adhesive system and total-etch adhesive system. Conclusions: 2% CHX application for 15 sec proved to alleviate the decrease of bond strength of dentin bonding systems. No significant difference was shown in ${\mu}TBS$ between total-etching system and self-etching system.

Microleakage of endodontically treated teeth restored with three different esthetic post and cores (심미적 포스트 코어의 종류에 따른 미세누출에 관한 연구)

  • Park, Ji-Geun;Park, Ji-Man;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.53-60
    • /
    • 2009
  • Statement of problem: At present, as the esthetic demands are on the increase, there are many ongoing studies for tooth-colored post and cores. Most of them are about fiber post and prefabricated zirconia post, but few about one-piece milled zirconia post and core using CAD/CAM (computer-aided design/computer-aided manufacturing) technique. Purpose: The objective of this study was to compare microleakage of endodontically treated teeth restored with three different tooth-colored post and cores. Material and methods: Extracted 27 human maxillary incisors were cut at the cementoenamel junction, and the teeth were endodontically treated. Teeth were divided into 3 groups (n=9); restored with fiber post and resin core, prefabricated zirconia post and heat-pressed ceramic core, and CAD/CAM milled zirconia post and core. After the preparation of post space, each post was cemented with dual-polymerized resin cement (Variolink II). Teeth were thermocycled for 1000 cycles between $5-55^{\circ}C$ and dyed in 2% methylene blue at $37^{\circ}C$ for 24 hours. Teeth were sectioned (bucco-lingual), kept the record of microleakage and then image-analyzed using a microscope and computer program. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: All groups showed microleakage and there were no significant differences among the groups (P>.05). Prefabricated zirconia post and heat-pressed ceramic core showed more leakage in dye penetration at the post-tooth margin, but there was little microleakage at the end of the post. Fiber post and resin core group and CAD/CAM milled zirconia post and core group indicated similar microleakage score in each stage. Conclusion: Prefabricated zirconia post and heat-pressed ceramic core group demonstrated better resistance to leakage, and fiber post and resin core group and CAD/CAM milled zirconia post and core group showed the similar patterns. The ANOVA test didn't indicate significant differences in microleakage among test groups. (P>.05)

COMPARISON OF MECHANICAL PROPERTIES OF VARIOUS POST AND CORE MATERIALS

  • Ahn Seung-Geun;Sorensen John A.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.288-299
    • /
    • 2003
  • Statement of problem: Many kinds of post and core systems are in the market, but there are no clear selection criteria for them. Purpose: The purpose of this study was to compare the flexural strength and modulus of elasticity of core materials, and measure the bending strength of post systems made of a variety of materials. Material and Methods: The flexural strength and elastic modulus of thirteen kinds core buildup materials were measured on beams of specimens of $2.0{\times}2.0{\times}24{\pm}0.1mm$. Ten specimens per group were fabricated and loaded on an lnstron testing machine at a crosshead speed of 0.25mm/min. A test span of 20 mm was used. The failure loads were recorded and flexural strength calculated with the measured dimensions. The elastic modulus was calculated from the slopes of the linear portions of the stress-stram graphs. Also nine kinds commercially available prefabricated posts made of various materials with similar nominal diameters, approximately 1.25mm, were loaded in a three-point bend test until plastic deformation or failure occurred. Ten posts per group were tested and the obtained data were anaylzed with analysis of variance and compared with the Tukey multiple comparison tests. Results: Clearfil Photo Core and Luxacore had flexural strengths approaching amalgam, but its modulus of elasticity was only about 15% of that of amalgam. The strengths of the glass ionomer and resin modified glass ionomer were very low. The heat pressed glass ceramic core had a high elastic modulus but a relatively low flexural strength approximating that of the lower strength composite resin core materials. The stainless steel, zirconia and carbon fiber post exhibited high bending strengths. The glass fiber posts displayed strengths that were approximately half of the higher strength posts. Conclusion: When moderate amounts of coronal tooth structure are to be replaced by a post and core on an anterior tooth, a prefabricated post and high strength, high elastic modulus core may be suitable. CLINICAL IMPLICATIONS In this study several newly introduced post and core systems demonstrated satisfactory physical properties. However when the higher stress situation exists with only a minimal ferrule extension remaining a cast post and core or zirconia post and pressed core are desirable.

MARGINAL FIT RELATED TO MARGIN TYPES OF GLASS INFILTRATED ALUMINA CORE FABRICATED FROM AQUEOUS-BASED ALUMINA TAPE

  • Oh, Nam-Sik;Yu, Byeung-Su;Kim, Il-Kyu;Choi, Jin-Ho;Kim, Dae-Joon;Park, Il-Seok;Lee, Myung-Hyun;Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.262-268
    • /
    • 2002
  • Statement of problem. In-Ceram system is one of the all-ceramic crowns that can be used in anterior 3 unit fixed partial dentures and posterior single crowns. The alumina core used in In-Ceram system is manufactured using slip-casting technique. The slip-casting technique is difficult and technique sensitive. To improve this problem, tape-casting method was introduced into dentistry. There were no studies to examine the effect of margin design on the margin fitness of all-ceramic crowns fabricated from alumina tape. Purpose. The purpose of this study was to compare the marginal fitness of glass infiltrated alumina core fabricated from aqueous-based alumina tape according to different margin types ($90^{\circ},\;110^{\circ},\;135^{\circ}$ shoulder margin). Material and method. Three upper central resin incisors were prepared with $90^{\circ},\;110^{\circ}$, and $135^{\circ}$ shoulder margins for all-ceramic crowns, respectively. The resin teeth were duplicated and master die and special plaster die were made as usual. After alumina cores were fabricated from aqueous-based alumina tape, cores were cemented to each 15 epoxy dies replicated from three resin teeth with resin cement. These cemented cores were embedded in epoxy resin. Specimens were cut mesiodistally and buccolingually. Marginal gap and discrepancy were measured under microscope. Results. The marginal gap and discrepancy of $90^{\circ}$ marginal angle was $75.1{\mu}m,\;86.6{\mu}m,\;110^{\circ}$ marginal angle was $41.5{\mu}m,\;50.7{\mu}m$ and $135^{\circ}$ marginal angle was $51.7{\mu}m,\;54.2{\mu}m$, respectively. The smallest value was seen in 110 (angle, which was statistically significant compared to that of $90^{\circ}$ angle (p<0.05). Conclusion. Marginal fitness of alumina cores made of alumina tape with $110^{\circ}$ shoulder margin was best and others were clinically acceptable.

An Experimental Study on the Bending Behavior of F.R.P. Sandwich Structure with 2nd Reinforced Bonding (2차 접착된 Sandwich 구조의 굽힘에 관한 실험연구)

  • Kim, Ik Tai
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • It has made a special study of bending behavior of F.R.P. sandwich beams with bonded 2nd-reinforced plies. Specimen's faces were made of chopped mat 300-450, roving clothes 570, core is urethane foam, resin is 713bp unsaturated polyester for ship construction and the mixture weight ratio of resin versus fiber was 55:45 for bending analysis. The purpose of this paper is to study the exact bending behavior of bonded area's deflection and stiffness depends upon various bonded F.R.P. (2nd reinforced ply) length and thickness on which covered joints and to find the optimum design for the sandwich structures. All results and suggestions are based on experiment and using thick face calculation.

Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements

  • Lima, Adriano Fonseca;Formaggio, Stephanie Ellen Ferreira;Zambelli, Ligia Franca Aires;Palialol, Alan Rodrigo Muniz;Marchi, Giselle Maria;Saraceni, Cintia Helena Coury;de Oliveira, Marcelo Tavares
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • Objectives: In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs) on the degree of conversion (DC) and the mechanical properties of resin cements. Materials and Methods: Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG), according to the different radiant exposures (5, 10, and $20J/cm^2$) and two LCUs (single-peak and polywave). The specimens were made (7 mm in length ${\times}$ 2 mm in width ${\times}$ 1 mm in height) using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E) by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA) and post hoc Tukey's test were performed. Results: No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols. Conclusions: On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

Impact resistance efficiency of bio-inspired sandwich beam with different arched core materials

  • Kueh, Ahmad B.H.;Tan, Chun-Yean;Yahya, Mohd Yazid;Wahit, Mat Uzir
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.105-117
    • /
    • 2022
  • Impact resistance efficiency of the newly designed sandwich beam with a laterally arched core as bio-inspired by the woodpecker is numerically investigated. The principal components of the beam comprise a dual-core system sandwiched by the top and bottom laminated CFRP skins. Different materials, including hot melt adhesive, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), epoxy resin (EPON862), aluminum (Al6061), and mild carbon steel (AISI1018), are considered for the side-arched core layer of the beam for impact efficiency assessment. The aluminum honeycomb takes the role of the second core. Contact force, stress, damage formation, and impact energy for beams equipped with different materials are examined. A diversity in performance superiority is noticed in each of these indicators for different core materials. Therefore, for overall performance appraisal, the impact resistance efficiency index, which covers several chief impact performance parameters, of each sandwich beam is computed and compared. The impact resistance efficiency index of the structure equipped with the AISI1018 core is found to be the highest, about 3-10 times greater than other specimens, thus demonstrating its efficacy as the optimal material for the bio-inspired dual-core sandwich beam system.