• Title/Summary/Keyword: Core polymer

Search Result 371, Processing Time 0.025 seconds

Light Efficiency Enhancement Technology of OLED: Fabrication of Random Nano External Light Extraction Composite Layer (OLED의 광 효율 향상 기술: 랜덤 나노 외부 광 추출 복합 층 제작)

  • Choi, Geun Su;Jang, Eun Bi;Seo, Ga Eun;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.39-44
    • /
    • 2022
  • The light extraction technology for improving the light efficiency of OLEDs is the core technology for extracting the light inside the OLEDs to the outside. This study demonstrates a simple method to generate random nanostructures (RNSs) containing high refractive index nanoparticles to improve light extraction and viewing angle characteristics. A simple dry low-temperature process makes the nanostructured scattering layer on the polymer resin widely used in the industry. The scattering layer has the shape of randomly distributed nanorods. To control optical properties, we focused on changing the shape and density of RNSs and adjusting the concentration of high refractive index nanoparticles. As a result, the film of the present invention exhibits a perpendicular transmittance of 85% at a wavelength of 550 nm. This film was used as a scattering layer to reduce substrate mode loss and improve EL efficiency in OLEDs.

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.

On the Composites of poly(ethylene 2,6-naphthalate) with a Thermotropic Block Copolyester(I) (열방성 블록 코폴리에스테르와 poly(ethylene 2,6-naphthalate)의 복합재료 연구(I))

  • Choi, Jae Kon
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.454-462
    • /
    • 1997
  • Thermotropic block copolyester(TLCP-b-PBN) based on poly(tetramethylene 2,6-(naphthaloyldioxy)dibenzoates)(TLCP) and poly(butylene 2,6-naphthalate)(PBN) was synthesized by solution polycondensation and melt-blended with poly(ethylene 2,6-naphthalate)(PEN) for in-situ composites. The TLCP domains showed nematic behavior in melt. The composition of block copolymer was determined from $^1H-NMR$ spectroscopy. The DSC thermogram of block copolymer revealed the presence of two major melting transitions, corresponding to the separete melting of PBN and TLCP domains. The glass transition temperature(Tg) of the PEN in the blends decreased with increasing the content of TLCP-b-PBN and the TLCP-b-PBN acted as a nucleating agent for the matrix polymers. In the 20% TLCP-b-PBN blend, well oriented TLCP fibriles were observed at temperature above the melting point of the PEN by optical microscopy. By scanning electron micrographs of cryogenically fractured surfaces of extruded blends, the TLCp domains were found to be finely and uniformely dispersed in 0.15 to $0.2{\mu}m$ size. Interfacial adhesion between the TLCP and matrix polymer was seemed to be good. Under certain condition TLCP formed a fiver structure in the PEN matrix, with thin oriented TLCP fibril in the skin region and spherical TLCP domains in the core.

  • PDF

Study of the Recycling Policy to Make Efficient Resource-recycling Society (효율적(效率的)인 자원순환사회 형성을 위한 자원재활용(資源再活用) 정책 고찰(考察))

  • Ryu, Su-Ho
    • Resources Recycling
    • /
    • v.18 no.2
    • /
    • pp.3-15
    • /
    • 2009
  • To accomplish the greenhouse gas reduction which is over core unit project of the "Green growth" policy and "Resource circulation society", it is important to maintain proper balance and complement between energy recovery from waste and material recycling. This research(study) examined the related policies on the past of korea and foreign country, and also "The 4th resource recycling master plan" and "Energy recovery from waste plan" to provide advisable direction for resource recycling policy. The results of the research(study) showed that there were no significant difference between korea and developed foreign countries waste management policies. But in German policy, energy recovery from waste and pre-treatment are importantly considered and highly required for permission. Under current circumstance in korea, recycling will be more difficult than in the past. According to "The 4th resource recycling master plan", film type of synthetic resin was not sustainable recycled material in substance."Energy recovery from waste plan", proved that the energy recovery from RDF/RPF have lower efficiency than regular incineration generation and substance recycling. To solve these problems, the energy and remainder heat recovery must be generalized to "Energy recovery" concept and institutional improvement such as LCA(Life Cycle Assessment) system are need to support it. And also technology development to extract synthetic polymer by dissolved film type of synthetic resin must be provided.

A Study on the Stabilization of the Papain Enzyme in the Moderately Concentrated Anionic Surfactant System (음이온 계면활성제에서 파파인 효소의 안정도에 관한 연구)

  • Kim, Ji-Yeong;Kim, Jin-Woo;Kim, Yong-Jin;Lee, Jae-Wook;Lee, Hae-Kwang;Kang, Hak-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2007
  • Even in the moderately concentrated anionic surfactant system, some special encapsulation method can shield the papain enzyme from proteolytic attacks. The stabilization of enzyme has been a major issue for successful therapies. In this study, we first stabilized an enzyme, papain in the microcapsules by using polyols, polyethyleneglycol (PEG), poly-propyleneglycol (PPG), and PEG-PPG-PEG block copolymer. In the analysis of EDS and CLSM, it was demonstrated that polyols are effectively located in the interface of papain and polymer. Polyols located in the interface had an ability to buffer the external triggers by hydrophobic partitioning, preventing consequently the catalytic activity of papain in the micro-capsules. Second. we introduced multi-layer capsulation methods containing ion complex. Such a moderately concentrated anionic surfactant system as wash-off cleansers, surfactants and waters can cause instability of entrapped enzymes. Surfactants and water in our final products swell the surface of enzyme capsules and penetrate into the core so easily that we can not achieve the effect of enzyme, papain. In this case, the ion complex multi-layer capsule composed of sodium lauroyl sarcosinate and polyquaternium-6 could effectively prevent water from penetration into the core enzyme, followed by in vivo test, and evaluate the stratum corneum (SC) turn-over speed.

Glass Transition Behavior of Dendritic Polymers Containing Mobile Aliphatic Polyether Cores and Glassy Peripheral Polystyrenes

  • Song, Jie;Cho, Byoung-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1167-1172
    • /
    • 2008
  • We investigated the glass transition temperatures ($T_g$) of dendrons consisting of conformationally mobile aliphatic polyether dendritic cores plus glassy peripheral polystyrenes (PSs), and linear PSs in the molecular weight range of 1000-8500 g/mol. We compared their $T_g$ behavior depending on their polymeric architecture. The linear PSs show a typical growth of $T_g$ up to 92.5 ${^{\circ}C}$ as the molecular weight increases to 8300 g/mol, while the dendrons display nearly constant $T_g$ values of 58-61 ${^{\circ}C}$, despite the increase of molecular weight with each generation. The striking contrast of Tg behavior would be mainly attributed to the fact that the dendrons keep the ratio of $N_e$/M ($N_e$: number of peripheral chain ends, M: molecular weight) over all the generations. Additionally, for the influence of dendritic spacers on glass transition temperature we prepared dimeric PSs with different linkage groups such as aliphatic ether, ester and amide bonds. We found that the dimer with the ether spacer exhibited the lowest glass transition at 55.4 ${^{\circ}C}$, while the amide linked dimer showed the highest glass transition temperature at 74.2 ${^{\circ}C}$. This indicates that the peripheral PS chains are effectively decoupled by the conformationally flexible ether spacer. The results from this study demonstrated that polymeric architecture and dendritic core structures play a crucial role in the determination of glass transition behavior, providing a strategy for the systematic engineering of polymer chain mobility.

Encapsulation and optical properties of Er3+ ions for planar optical amplifiers via sol-gel process (졸-겔법을 이용한 광증폭기의 Er 이온 캡슐화 및 광학적 특성)

  • Kim, Joo-Hyeun;Seok, Sang-Il;Ahn, Bok-Yeop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.135-135
    • /
    • 2003
  • The fast evolution in the fold of optical communication systems demands powerful optical information treatment. These functions can be performed by integrated optical systems. A key component of such systems is erbium doped waveguide amplifier(EDWA). The intra 4f radiative transition of Er at 1.5 $\mu\textrm{m}$ is particularly interesting because this wavelength is standard in optical telecommunications. The fabrication of waveguide amplifier for integrated optics using sol-gel process has received an increasing attention. Potential advantage of lower cost by less capital equipment and easy processing makes this process an attractive alternatives to conventional technologies like flame hydrolysis deposition, ion exchange and chemical vapor deposition, etc. In addition, sol-gel process has been found to be extremely suitable for the control of composition and refractive index related directly with optical properties. The main drawback of such an amplifier with respect to the EDWA is the need for a much higher Er3+ concentration to compensate for the smaller interaction length. However, the high doping of Er might be resulted in the non-radiative relaxation by clustering of Er ions End co-operative upconversion. In order to solve this problem, we investigate the possibility of avoiding short Er-Er distances by encapsulation of Er3+ ions in hosts such as organic-inorganic hybrid materials. For inorganic-organic hybrid sols, methacryloxypropyltrimethoxysilane (MPTS), zirconyl chloride octahydrate and erbium(III) chloride hexahydrate were used as starting materials, followed by conventional sol-gel process. It was observed by TEM that nano sols having core/shell toplology were formed, depending on the mole ratio of Zr/Er. The surface roughness for the coatings on Si substrate was investigated by AFM as a function of Zr/Er ratio. The local environment and vibrational Properties of Er3+ ions were studied using Near-IR, FT-IR, and UV/Vis spectroscopy. Nano hybrid coatings derived from polymer and Er doped encapsulation Eave the good luminescence at 1.55$\mu\textrm{m}$.

  • PDF

Optima Dissolution processing Conditions of C-type hollow fibers (C형 중공사의 최적 용출 가공 조건 고찰)

  • Cho, Sook-Kyung;Kim, Dong-Kwon;Seo, Hae-Cheon;Park, Joo-Cheol;Park, Seong-Woo;Kang, Yoon-Hwa
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.104-104
    • /
    • 2012
  • 아웃도어용 스포츠웨어 의류분야는 소비자들의 욕구가 기능성, 착용감, 패션성을 매우 중시하는 고감성, 고기능성 제품특성을 요구하고 있으며 이를 가장 충족시킬 수 있는 패션 트랜드로서 보온, 경량화 제품이 가장 급부상하고 있는 아이템이다. 경량성의 쾌적 스포츠 웨어에 사용되는 주요 합섬소재인 PET, Nylon을 이용하여 소재의 세섬화, 중공 소재를 통한 제품 개발이 대부분으로 보온, 경량, 속건 등 의복에서의 쾌적 기능성을 개선하기 위하여 개발되는 소재 및 제품의 경량화, 보온 및 흡한속 건성 부여를 통한 기능 요소와 신질감 발현의 촉감요소를 통한 차별화 된 제품개발이 요구되고 있다. 보온 기능성을 부여하는 기술로써 가장 일반적인 기술은 섬유 내부에 중공을 형성하여 경량성과 보온성을 동시에 가지는 기능성 원사 제조 기술과 섬유 내에 열에너지를 흡수할 수 있는 물질을 넣어 외부의 태양광을 섬유내로 흡수하여 열에너지로 전환, 축적함으로서 보온성을 향상시키는 방식이 있다. 주로 경량 보온의 동시 발현을 위하여 중공 형성을 통한 보온 소재 개발이 활발하게 일어나고 있는 실정이다. 가장 많은 수요를 차지하고 있는 경량 보온성 중공사의 경우, 강도 저하, 염색 불량 등의 공정 애로점이 발생하며, 제직 및 가공 공정 시 원사 내 중공이 찌그러짐이 발생하므로 완제품 제조 후에는 중공의 기능이 제대로 발현되지 못하는 문제가 발생한다. 또한 알칼리 또는 용제를 사용하여 후용출 하는 중공사의 경우, 공정이 복잡함은 물론 환경에 유해한 공정이다. 특히, 감량 후 직물의 인열강도는 감량 전과 비교하여 감소하게 되는데 이는 이용성 polymer가 용출되면서 생긴 중공에 의해 섬도가 감소되어 강도가 저하됨을 알 수 있다. 따라서 Sheath 부분에 최대한 손상을 주지 않으면서 Core 부분을 완전 용출 시킬 수 있는 감량 조건을 확보할 필요가 있다. 이에 보온성, 경량성의 기능을 극대화시키고, 중공률 유지하는 최적 용출 가공 조건을 확립하고자 연구하였다.

  • PDF

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.