• 제목/요약/키워드: Core meltdown

검색결과 22건 처리시간 0.024초

중대 노심사고시 격납용기 손상유형에 대한 고찰 (Possible Containment Failure Mechanisms in Severe Core Meltdown Accidents)

  • Kang Yul Huh;Jong In Lee;Jin Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.53-67
    • /
    • 1985
  • 중대 노심사고는 아직 Design Basis Accident에 포함되지 않고 있으나, 극히 적은 사고 확률을 가지는 반면 사고 후 영향이 큼으로해서 원자력발전소의 전반적 위험 평가에 중요한 요인중의 하나가 되고 있다. 중대 노심사고시 격납용기 손상에 관련된 물리현상들은 Steam Explosion, Debris Bed Coolability, Hydrogen Burning, Steam Spike와 Core-Concrete Interaction 등이며, 각각의 현상에 대한 좀 더 나은 이해를 위해 현재 이루어지고 있는 연구들에 대한 개략적 설명을 시도 하였다.

  • PDF

COMPASS - New modeling and simulation approach to PWR in-vessel accident progression

  • Podowski, Michael Z.;Podowski, Raf M.;Kim, Dong Ha;Bae, Jun Ho;Son, Dong Gun
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1916-1938
    • /
    • 2019
  • The objective of this paper is to discuss the modeling principles of phenomena governing core degradation/melting and in-vessel melt relocation during severe accidents in light water reactors. The proposed modeling approach has been applied in the development of a new accident simulation package, COMPASS (COre Meltdown Progression Accident Simulation Software). COMPASS can be used either as a stand-alone tool to simulate in-vessel meltdown progression up to and including RPV failure, or as a component of an integrated simulation package being developed in Korea for the APR1400 reactor. Interestingly, since the emphasis in the development of COMPASS modeling framework has been on capturing generic mechanistic aspects of accident progression in light water reactors, several parts of the overall model should be useful for future accident studies of other reactor designs, both PWRs and BWRs. The issues discussed in the paper include the overall structure of the model, the rationale behind the formulation of the governing equations and the associated simplifying assumptions, as well as the methodology used to verify both the physical and numerical consistencies of the overall solver. Furthermore, the results of COMPASS validation against two experimental data sets (CORA and PHEBUS) are shown, as well as of the predicted accident progression at TMI-2 reactor.

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.

Analysis of Core Disruptive Accident Energetics for Liquid Metal Reactor

  • Suk, Soo-Dong;Dohee Hahn
    • Nuclear Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.117-131
    • /
    • 2002
  • Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of the work to demonstrate the inherent and ultimate safety of conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 MWe pool- type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method and associated computer program, SCHAMBETA, was developed using a modified Bethe-Tait method to simulate the kinetics and thermodynamic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of the energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the SCHAMBETA code for various reactivity insertion rates up to 100 S/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies were also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters.

Comparison of the Recriticality Risk of Fast Reactor Cores following a HCDA

  • Na, Byung-Chan;Dohee Hahn
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.495-501
    • /
    • 1997
  • A preliminary and parametric sensitivity study on recriticality risk of fast reactor cores after a hypothetical total core meltdown accident was performed. Only neutronic aspects of the accident were considered, independent of the accident scenario, and efforts were made to estimate the quantity of molten fuel which must be ejected out of the core to assure a sub-critical state after the accident. Two types of parameters were examined : characteristic parameters of molten core such as geometry, molten pool type (homogenized or stratified), fuel temperature, environment, and relative parameters to normal core such as core size(small or large), and fuel type (oxide, nitride, metal). The first type of parameters was found to intervene more directly in the recriticality risk than the second type of parameters.

  • PDF

Assessment of the core-catcher in the VVER-1000 reactor containment under various severe accidents

  • Farhad Salari;Ataollah Rabiee;Farshad Faghihi
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.144-155
    • /
    • 2023
  • The core catcher is used as a passive safety system in new generation nuclear power plants to create a space in the containment for the placing and cooling of the molten corium under various severe accidents. This research investigates the role of the core catcher in the VVER-1000 reactor containment system in mitigating the effects of core meltdown under various severe accidents within the context of the Ex-vessel Melt Retention (EVMR) strategy. Hence, a comparison study of three severe accidents is conducted, including Station Black-Out (SBO), SBO combined with the Large Break Loss of Coolant Accident (LB-LOCA), and SBO combined with the Small Break Loss of Coolant Accident (SB-LOCA). Numerical comparative simulations are performed for the aforementioned scenario with and without the EX-vessel core-catcher. The results showed that considering the EX-Vessel core catcher reduces the amount of hydrogen by about 18.2 percent in the case of SBO + LB-LOCA, and hydrogen production decreases by 12.4 percent in the case of SBO + SB-LOCA. Furthermore, in the presence of an EX-Vessel core-catcher, the production of gases such as CO and CO2 for the SBO accident is negligible. It was revealed that the greatest decrease in pressure and temperature of the containment is related to the SBO accident.

Assessment of Mass Fraction and Melting Temperature for the Application of Limestone Concrete and Siliceous Concrete to Nuclear Reactor Basemat Considering Molten Coree-Concrete Interaction

  • Lee, Hojae;Cho, Jae-Leon;Yoon, Eui-Sik;Cho, Myungsug;Kim, Do-Gyeum
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.448-456
    • /
    • 2016
  • Severe accident scenarios in nuclear reactors, such as nuclear meltdown, reveal that an extremely hot molten core may fall into the nuclear reactor cavity and seriously affect the safety of the nuclear containment vessel due to the chain reaction caused by the reaction between the molten core and concrete. This paper reports on research focused on the type and amount of vapor produced during the reaction between a high-temperature molten core and concrete, as well as on the erosion rate of concrete and the heat transfer characteristics at its vicinity. This study identifies themass fraction and melting temperature as the most influential properties of concrete necessary for a safety analysis conducted in relation to the thermal interaction between the molten core and the basemat concrete. The types of concrete that are actually used in nuclear reactor cavities were investigated. The $H_2O$ content in concrete required for the computation of the relative amount of gases generated by the chemical reaction of the vapor, the quantity of $CO_2$ necessary for computing the cooling speed of the molten core, and the melting temperature of concrete are evaluated experimentally for the molten core-concrete interaction analysis.

고리 1호기 소형파단 냉각제 상실사고에 의해 개시된 가상 노심용융 사고 해석 (Severe Accident Sequence Analysis - Part 1: Analysis of Postulated Core Meltdown Accident Initiated by Small Break LOCA in Kori-1 PWR Dry Containment)

  • Jong In Lee;Seung Hyuk Lee;Jin Soo Kim;Byung Hun Lee
    • Nuclear Engineering and Technology
    • /
    • 제16권3호
    • /
    • pp.141-154
    • /
    • 1984
  • 고리 1호기의 소형파단냉각재 상실사고에 의해 개시된 중대사고 유형과 그 현상에 대할 분석이 제시되었다. 본 해석에서는 KAERI에서 기존 전산코드의 수정.보완된 MARCH 전산코드가 사용되었다. 특히 고리 1호기의 소형파단 LOCA 해석시 수소 거동과 중기과압에 대한 평가 및 그 응답성에 중점을 두고 검토되었으며, 2-loop 발전소 데이타 분석 및 debris-Water 상호작용 모델에 대한 비교 분석이 수행되었다. 제 1부 중대 사고유형 분석결과, 저농도에서 H$_2$ burning이 이루어지는 경우 계속적인 수소 생성으로 인해 반복 수소 spike가 야기 되나, 격납용기 설계압력치 보다낮게 예측되었다. 또한 debris/water 상호작용시 core debris의 입자크기는 첨두압력의 크기에 미치는 영향은 미세하나 첨두압력의 발생시점은 dryout모델사용에 의해서 상당히 지연시키게 되었다. 완전한 노심용융 사고시 수소연소와 증기과압으로부터 예측된 격납용기 최대압력은 격납용기 건전성에 심각한 위협을 초래하지 않는 것으로 나타났다.

  • PDF