• 제목/요약/키워드: Core deformation

검색결과 399건 처리시간 0.058초

Characteristics of Strength and Deformation of Aluminum Honeycomb Sandwich Composites Under Bending Loading (굽힘 하중을 받는 알루미늄 하니컴 샌드위치 복합재료의 강도 및 변형 특성)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.61-64
    • /
    • 2004
  • The strength characteristics as well as deformation behaviors of honeycomb sandwich composite (HSC) structures were investigated under bending in consideration of various failure modes such as skin layer yielding, interface-delamination, core shear deformation and local buckling. Deformation behaviors of honeycomb sandwich plates were observed with various types of aluminum honeycomb core and skin layer. Their finite-element analysis simulation with a real model of honeycomb core was performed to analyze stresses and deformation behaviors of honeycomb sandwich plates. Its results were very comparable to the experimental ones. Consequently, the increase in skin layer thickness and in cell size of honeycomb core had dominant effects on the strength and deformation behaviors of honeycomb sandwich composites.

  • PDF

Large deformation performance of the anti-seepage system connection part in earth core dam built on thick overburden

  • Yu, Xiang;Wang, Gan;Wang, Yuke;Du, Xueming;Qu, Yongqian
    • Geomechanics and Engineering
    • /
    • 제29권6호
    • /
    • pp.683-696
    • /
    • 2022
  • Dams are inevitably planned to be built on thick overburden with high permeability and deformability. The connection part between concrete cut-off wall in overburden and earth core in dam body is not only a key part of the anti-seepage system, but also a weak position. Large uneven settlement will be aroused at the concoction part. However, the interaction behavior and the scope of the connection part cannot be determined effectively. In this paper, numerical analysis of a high earth core dam built on thick overburden was carried out with large deformation FE method. The mechanical behavior of the connection part was detail studied. It can be drawn that there is little differences in dam integral deformation for different analysis method, but big differences were found at the connection part. The large deformation analysis method can reasonably describe the process that concrete wall penetrates into soil. The high plasticity clay has stronger ability to adapt to large uneven deformation which can reduce stress level, and stress state of concrete wall is also improved. The scope of high plasticity clay zone in the connection part can be determined according to stress level of soils and penetration depth of concrete wall.

Bending Creep Properties of Cross-Laminated Wood Panels Made with Tropical Hardwood and Domestic Temperate Wood

  • PARK, Han-Min;GONG, Do-Min;SHIN, Moon-Gi;BYEON, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권5호
    • /
    • pp.608-617
    • /
    • 2020
  • For efficient use and expansion of domestic small- and medium-diameter woods, cross-laminated wood panels composed of tropical hardwoods and domestic temperate woods were fabricated, and the bending creep behavior under long-term loading was investigated. The bending creep curve of the cross-laminated wood panels showed an exponential function graph with a sharp increase at the top right side. The wood panel composed of a teak top layer and larch core and bottom layers recorded the highest initial deformation, and that composed of a merbau top layer and tulip core and bottom layers showed the lowest initial deformation. Creep deformation of the cross-laminated wood panels showed the highest value in that composed of a teak top layer and larch core and bottom layers and showed the lowest value in that composed of a merbau top layer and tulip core and bottom layers. The obtained creep deformation is 3.1-4.3 times that of merbau, however, it is remarkably lower than that of tulip and larch. The highest relative creep was recorded by the wood panel composed of merbau top layer and larch core and bottom layers, whereas that composed of the teak top layer and tulip core and bottom layers showed the lowest relative creep.

General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory

  • Nasihatgozar, M.;Khalili, S.M.R.;Fard, K. Malekzadeh
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.151-176
    • /
    • 2017
  • This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory (FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse displacements are modeled using the third order of the Taylor's series extension. It provides the potentiality for considering both compressible and incompressible cores. To find these equations and boundary conditions, Hamilton's principle is used. Also, the effect of trapezoidal shape factor for cross-section of curved panel element ($1{\pm}z/R$) is considered. The natural frequency parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the natural frequencies of DCSP are presented.

The Analysis of Welding Deformation in Arc-spot Welded Structure (I) - Temperature Monitoring and Heat Transfer Analysis - (아크 점용접 구조물의 정밀 용접 열변형 해석에 관한 연구 (I) -온도 모니터링 및 열전달 모델 정립-)

  • 이원근;장경복;강성수;조상명
    • Journal of Welding and Joining
    • /
    • 제20권4호
    • /
    • pp.544-550
    • /
    • 2002
  • Arc-spot welding is generally used in joining of precise parts such as case and core in electronic compressor. It is important to control joining deformation in electronic compressor because clearance control in micrometer order is needed for excellent airtightness and anti-nose. The countermeasures far this deformation in field have mainly been dependent on the rule of try and error by operator's experience because of productivities. For control this deformation problem without influence on productivities, development of exact simulation model should be needed. In this study, to solve this deformation problem in arc-spot welded structure with case and core, we intend to make a simulation model that is able to predict deformation in precise order by tuning and feedback between sensing data and simulation results. This paper include development of heat input model for arc-spot welding, temperature monitoring and make a heat transfer model using sensing data in product.

Influences of Core Materials during Impact The Bulging Behavior of Sleeved Polymer Projectiles (슬리브드 폴리머 발사체의 충격시 벌징 거동 패턴에 미치는 코어 재료의 영향)

  • Shin, Hyung-Seop;Park, Sung-Taek;Jung, Yoon-Chul
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.198-203
    • /
    • 2008
  • In the present study, the deformation behavior of both of metal and polymer combination on impact was investigated. They have showed a different deformation behavior when the co-axially combined projectile was impacted on rigid target. The theory according to Taylor's simplified approach assumes an ideally rigid-plastic material model exhibiting rate-independent behavior and simple one-dimensional wave propagation concepts that neglect radial inertia. In the case of impact with polymeric materials, elastic strain in general are not negligible compared with plastic strain; and the rigid-plastic material behavior assumed by Taylor for metallic materials cannot be applied any more. Since, the sleeve and the core materials have widely different mechanical properties, they will produce a significant difference of mechanical impedance with each other. Therefore these impedance mismatch influences on the deformation behavior sleeved polymer projectile on impact. As a result, sleeved projectiles will generate a very interesting impact behavior. Therefore, the according to sleeved metal material and core polymer material can see expected. The objective of this study was to investigate the factors which influences on deformation behavior pattern of sleeve materials surface.

  • PDF

Deformation and Fracture Analysis of Honeycomb Sandwich Composites under Bending Loading (굽힘 하중을 받는 하니컴 샌드위치 복합재료의 변형 및 파괴 해석)

  • Kim Hyoung-Gu;Choi Nak-Sam
    • Composites Research
    • /
    • 제18권1호
    • /
    • pp.30-37
    • /
    • 2005
  • The bending strength characteristics and local deformation behaviors of honeycomb sandwich composites were investigated using three-point bending experiment and finite element simulation with a real model of honeycomb core. Two kinds of cell sizes of honeycomb core, two kinds of skin layer thicknesses, perfect bonding specimen as well as initial delamination specimen were used for analysis of stress and deformation behaviors of honeycomb sandwich beams. Various failure modes such as skin layer yielding, interfacial delamination, core shear deformation and local buckling were considered. Its simulation results were very comparable to the experimental ones. Consequently, cell size of honeycomb core and skin layer thickness had dominant effects on the bending strength and deformation behaviors of honeycomb sandwich composites. Specimens of large core cell size and thin skin layer showed that bending strength decreased by $30\~68\%$.

Deformation of Flush Door Depending on Core Construction Under the Change of Environmental Condition (환경 노출 조건 하에서 심재구성에 따른 플러쉬문의 변형)

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제31권2호
    • /
    • pp.38-44
    • /
    • 2003
  • This study was carried out to evaluate the feasibility of using HDF as surface panels as well as core materials for flush door manufacturing. Six core constructions were developed and applied to manufacture door specimens and conventional skin door specimen was also manufactured for comparison. Door specimens were tested under changing interior environmental condition for 3~4 months during winter and summer seasons. During the test period, deformation of doors were measured weekly, and temperature and relative humidity of testing area were also recorded. From this study, it was concluded that HDF can be used to manufacture quality flush doors and core construction developed in this study showed good quality compared to conventional skin door. Deformation of doors increased as temperature and relative humidity of the surrounding environment increased. Flush doors generally showed less deformation than skin doors, and evaluated to be stable and good quality when compared to skin door.

Form Error Compensation of Aspheric lens considering Thermal Deformation on Glass Molding Press ( I ) (Glass Lens 가압성형의 열 변형에 의한 비구면 Lens 형상보정 ( I ))

  • Lee, Hak-Suk;Lee, Dong-Kil;Park, Jong-Rak;Kim, Hye-Jung;Kim, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.354-354
    • /
    • 2008
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized is gradually increasing. Generally, the aspheric glass lens is manufactured by GMP(Grass Molding Press) method using WC(tungsten carbide) mold core. In this study, the thermal deformation which occurs in the cooling step of GMP was considered, and it was compensated the form of mold core. The lens which was molded by compensated mold core was satisfied that can be applied to the actual specifications.

  • PDF

Modeling the wetting deformation behavior of rockfill dams

  • Guo, Wanli;Chen, Ge;Wu, Yingli;Wang, Junjie
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.519-528
    • /
    • 2020
  • A mathematical wetting model is usually used to predict the deformation of core wall rockfill dams induced by the wetting effect. In this paper, a series of wetting triaxial tests on a rockfill was conducted using a large-sized triaxial apparatus, and the wetting deformation behavior of the rockfill was studied. The wetting strains were found to be related to the confining pressure and shear stress levels, and two empirical equations, which are regarded as the proposed mathematical wetting model, were proposed to express these properties. The stress and deformation of a core wall rockfill dam was studied by using finite element analysis and the proposed wetting model. On the one hand, the simulations of the wetting model can estimate well the observed wetting strains of the upstream rockfill of the dam, which demonstrated that the proposed wetting model is applicable to express the wetting deformation behavior of the rockfill specimen. On the other hand, the simulated additional deformation of the dam induced by the wetting effect is thought to be reasonable according to practical engineering experience, which indicates the potential of the model in dam engineering.