• 제목/요약/키워드: Core Gap

검색결과 420건 처리시간 0.024초

Parts Feeder의 진동특성에 관한 연구(제2보) -Bowl의 재질에 관한 진동특성- (A Study on the Vibration Characterrst ics for Parts Feeder(2nd Report) -Vibration Characteristics due to Bowl Materials-)

  • 김순채;김희남;권동호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.597-601
    • /
    • 1994
  • In this paper, we have describes about the reationships between a core gap and a feeding velocity, an amplitude and the core gap by the exciting forc, the parts movement and a bowl materials, and the feeding veocity and the parts in the parts feeder. The main results as compared with the stainless and the aluminum materials are as follow : 1) The mean feeding velocity by bowl material shown more relative proportion in the STS304 to the exciting voltage than the C%AV 2) IN the exciting voltage, the response time for the aluminum material is slow, but the stainless is sensibility. 3) An exciting voltage is rised by an increase of the weight, but an amplitude has been in the range between 23 .mu.m through 40 .mu. m.

  • PDF

DEVELOPMENT OF AN IMPROVED INSTALLATION PROCEDURE AND SCHEDULE OF RVI MODULARIZATION FOR APR1400

  • Ko, Do-Young
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.89-98
    • /
    • 2011
  • The construction technology for reactor vessel internals (RVI) modularization is one of the most important factors to be considered in reducing the construction period of nuclear power plants. For RVI modularization, gaps between the reactor vessel (RV) core-stabilizing lug and the core support barrel (CSB) snubber lug must be measured using a remote method from outside the RV. In order to measure RVI gaps remotely at nuclear power plant construction sites, certain core technologies must be developed and verified. These include a remote measurement system to measure the gaps between the RV core-stabilizing lug and the CSB snubber lug, an RVI mockup to perform the gap measurement tests, and a new procedure and schedule for RVI installation. A remote measurement system was developed previously, and a gap measurement test was completed successfully using the RVI mockup. We also developed a new procedure and schedule for RVI installation. This paper presents the new and improved installation procedure and schedule for RVI modularization. These are expected to become core technologies that will allow us to shorten the construction period by a minimum of two months compared to the existing installation procedure and schedule.

국부적 자속 포화 현상을 이용한 리엑터 및 변압기의 공극 등가 모델에 관한 연구 (Study on Transformer and Inductor Using Equivalent Air gap to Partial Flux Saturation)

  • 박성준;이상훈;김정훈
    • 한국산업융합학회 논문집
    • /
    • 제17권3호
    • /
    • pp.103-112
    • /
    • 2014
  • BY the Transformers and reactors, the input electrical energy is converted into magnetic energy. At the end through the magnetic energy was passed at the output parameter. Specially At the flyback transformer or a reactor airgap were designed to contain more magnetic energy. But that work is very difficult for the optimal design. It is that Contradictions are between the length of the Air-gap, Winding inductance, DC bias. As to e Several conflicting conditions in order to determine the optimum Air-gap has a lot of experience and trial & error is necessary. The approach proposed in this paper, the auxiliary winding on the core attached to part of primary core, that by applying a DC voltage has a dramatic effect like Core with designed Air-gap. This inventiveness and advantage is to regulate arbitrarily the Saturation Flux Quantity by the input signal to secondary winding. Accordingly obtained the biggest effect is that increasing limits of the saturation current destined by the material and shape of the conventional core. In other words, that can decreas the size of the transformer and reactor, While maintaining the current saturation capacity. This paper, prove its effect as using the local flux saturation in transformers and reactors for research by the computer program using the finite element method (FEM) simulation, followed by actual experiment to verify

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

Closing the "CIM GAP" in the Process Industries

  • Canfield, Frank-B.;Nair, Pratap-K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1557-1563
    • /
    • 1991
  • Vendors and consultants struggle to draw attention to their proven experience in discrete CIM in order to convince process manufacturers to adopt CIM technology. The analogy works very well at the periphery where an invoice is an invoice, but disintegrates at the core where modeling of the manufacturing "process" is required. Until recently, it has not been possible to completely and rigorously model entire process plants in real-time, and this missing core element has been called the "CIM GAP" With the recent introduction of the concurrent resolution $^{sm}$ kernel, the CIM GAP now is being closed in the process industries.ntroduction of the concurrent resolution $^{sm}$ kernel, the CIM GAP now is being closed in the process industries.

  • PDF

Estimation of Output Voltage and Magnetic Flux Density for a Wireless Charging System with Different Magnetic Core Properties

  • Park, Ji Hea;Kim, Sang Woo
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.105-110
    • /
    • 2013
  • The design model and key parameters of the material design for the control of induced magnetic flux at the near-field and efficient power transfer in a modified wireless power transfer (WPT) system with a large air gap of wireless electric vehicles were investigated through analytical simulations for magnetic vector and time-domain transient analysis. Higher saturation magnetic core with low core loss induced a stronger vertical magnetic field by the W-type primary coil in the WPT system with a gap of 20 cm at 20 kHz, which is shown from the vector potentials of the magnetic induction. The transient analysis shows that the higher magnetic fluxes through the pick-up cores lead to a linear increment of the alternating voltage with a sinusoidal waveform in the non-contact energy transfer system.

더 형 core를 사용한 비접촉식 충전장치에 관한 연구 (Contactless Battery Charger with a the type Core)

  • 신태성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.678-681
    • /
    • 2000
  • Contactless battery charger with a "더" type core is proposed in this paper. The proposed take-apart transformer maintain a high coupling coefficient in spite of air gap. The ZV-ZCS method is used for the efficiency and stable opeation of the system.he system.

  • PDF

A COMPARISON OF THE FIDELITY BETWEEN VARIOUS CORES FABRICATED WITH CAD/CAM SYSTEMS

  • Park, Sun-Hee;Lee, Kyu-Bok
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.269-279
    • /
    • 2008
  • STATEMENT OF PROBLEM: Recently, various all-ceramic crowns fabricated with CAD/CAM systems have come into wide use in dental clinic. However, there are only few domestic studies on CAD/CAM restorations. PURPOSE: Purpose of this study was to compare the fidelity (absolute marginal discrepancy and internal gap) between various cores fabricated with different CAD/CAM systems (Procera system, Lava system, Cerec inLab system) and conventional metal cast core. MATERIALS AND METHODS: 10 cores per each system were fabricated. The absolute marginal discrepancies were measured using measuring microscope and digital counter. The internal gaps were calculated using a silicone paste. The results were statistically analyzed using the one-way ANOVA test and Tukey's HSD test. RESULTS: Within the limits of this study the results were as follows. 1. The absolute marginal discrepancies were $32.5{\pm}3.7\;{\mu}m$ for metal cast core, $72.2{\pm}7.0\;{\mu}m$ for Procera core, $40.8{\pm}5.4\;{\mu}m$ for Lava core, and $55.3{\pm}8.7\;{\mu}m$ for Cerec inLab core. The internal gaps were $38.4{\pm}5.7\;{\mu}m$ for metal cast core, $71.4{\pm}5.3\;{\mu}m$ for Procera core, $45.9{\pm}7.3\;{\mu}m$ for Lava core, and $51.8{\pm}6.2\;{\mu}m$ for Cerec inLab core. 2. The fidelity of metal cast core showed the smallest gaps, followed by Lava core, Cerec inLab core, and Procera core. CONCLUSION: The fidelities of 4 core groups were all within the clinically acceptable range ($120\;{\mu}m$).

공극형 고온초전도한류기의 특성실험 (Tests of Inductive High-Tc Superconducting Fault Current Limiter with an Air-Gap)

  • 주민석;이찬주;추용;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.181-183
    • /
    • 1996
  • A novel model of an inductive superconducting fault current limiter with an inductive superconducting fault current limiter with the air-gap core was fabricated and tested. If its impedance is not high enough to limit the fault current, then destructive damage occurs in the power system. We attained a magnetic saturation under higher current by an effective air gap introduced in the core. The fault current was successfully limited to two times as much as the nominal current at a 60 Hz source having an effective voltage of 70 V. The fault current flowing under such conditions can be limited to a desired value without any fault current peak within 1/4 cycles.

  • PDF

Saturated Boiling Heat Transfer of Freon-113 in Hemispherical Narrow Space and Implications for Degraded Core Coolability in Reactor Vessel Lower Plenum

  • Bang, Kwang-Hyun
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(2)
    • /
    • pp.574-579
    • /
    • 1995
  • Saturated boiling heat transfer experiment in a hemispherical narrow space is conducted using Freon-113 to investigate an additional heat removal capability through a hypothetical gap between lower head and degraded core. The narrow space of 1mm consists of a 124mm diameter heated stainless steel hemisphere and a glass outer vessel. Within the hemispherical narrow space large coalesced bubbles are produced and these bubbles rise in random direction, causing liquid flow in from the opposite side to fill the region. Such flow in random direction makes the flow field in the narrow space very chaotic and thus enhance heat transfer. The heat transfer coefficient is higher at lower angle and at higher heat flux. The present study shows that the liquid from upper region can effectively penetrate into the gap and augment the heat removal capability through tile gap.

  • PDF