• Title/Summary/Keyword: Core Center

Search Result 2,385, Processing Time 0.046 seconds

A Case of Primary Diffuse Nodular Pulmonary Amyloidosis Localized in the Lung (원발성 결절성 폐실질형 유전분증 1예)

  • Jung, Sung-Kwoen;Oh, Joon;Roh, Yang-Won;Kong, Hee-Sang;Park, Kae-Young;Park, Jeong-Woong;Park, Jae-Kyung;Nam, Gui-Hyun;Ha, Seong-Hwen;Lee, Han-Kyung;Jeong, Seong-Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.365-371
    • /
    • 2000
  • Nodular pulmonary amyloidosis is one of the rare manifestation of amyloid disease. It is known to be caused by amyloid L fibrils in the majority of cases. We experienced an unusual case of a forty-one year-old woman who was presented with multiple nodular lesion on the chest X-ray. CT-guided core needle biopsy, performed on the lesion, showed apple green birefringes, when stained Congo red and examined under polarized light, Ultrastructurally, there are randomly oriented, forming densed networks, and consists of fine, 7.5 to 10nm diameter, rigid, non-branching filaments of various lengths in electron-microscopic finding. We report a case of primary diffuse nodular pulmonary amyloidosis only localized in the lung, which was confirmed by CT guided core needle biopsy.

  • PDF

Cryopreservation of Mulberry Germplasm Core Collection and Assessment of Genetic Stability through ISSR Markers

  • Rao, A. Ananda;Chaudhury, Rekha;Kumar, Suseel;Velu, D.;Saraswat, R.P.;Kamble, C.K.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.23-33
    • /
    • 2007
  • A simple and reliable cryo technique using desiccation and slow freezing of winter dormant buds was employed for 238 core collection of mulberry germplasm collected from diverse geographical regions and maintained under tropical conditions in the ex situ field gene bank to develop long-term biodiversity conservation for ensuring sustainable utilization of these valuable resources. Desiccation and freezing tolerance of bud grafts and excised shoot apices in the axillary buds of different Morus species under in vivo and in vitro condition indicated species-specific variation and most of the wild Morus species were found sensitive. In vitro regeneration and cryopreservation($-196^{\circ}C$) protocols using differentiated bud meristem like axillary winter dormant buds were worked out for a wide range of Morus species, land races, wild and cultivated varieties. Successful cryopreservation of mulberry winter dormant buds of different accessions belonging to M. indica, M. alba, M. latifolia, M. cathayana, M. laevigata, M. nigra, M. australis, M. bombycis, M. sinensis, M multicaulis and M. rotundiloba was achieved. Among wild species Morus tiliaefolia, and M. serrata showed moderate recovery after cryopreservation. Survival rates did not alter after three years of cryopreservation of different Morus species. ISSR markers were used to ascertain the genetic stability of cryopreserved mulberry, which showed no difference detected among the plantlets regenerated from frozen apices in comparison to the non-frozen material.

Design of Serpentine Flow-field Stimulating Under-rib Convection for Improving the Water Discharge Performance in Polymer Electrolyte fuel cells (고분자전해질 연료전지의 물 배출 성능 향상을 위한 촉매층 공급 대류 촉진 사행성 유동장 설계)

  • Choi, Kap-Seung;Bae, Byeong-Cheol;Park, Ki-Won;Kim, Hyung-Man
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Proton exchange membrane fuel cell performance is changed by the complicated physical phenomenon. In this study, water discharge performance of proton exchange membrane fuel cell were performed numerically to compare serpentine channel flow fields of 5-pass 4-turn serpentine and 25 $cm^2$ reaction surface between with and without sub-channel at the rib. Through the supplement of sub channel flow field, it is shown from the results that water removal characteristic inside channel improves because the flow direction of under-rib convection is changed into the sub channel. Reacting gases supplied from entrance disperse into sub channel flow field and electrochemical reaction occurs uniformly over the reaction surface. The results obtained that total current density distributions become uniform because residence time of reacting gases traveling to sub-channel flow field is longer than to main channel.

Effect of ABA on Disassembly of Chloroplast during Senescence in Detached Leaves of Zea mays

  • Lee, Dong-Hee;Seo, Young-Hee;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.177-188
    • /
    • 1999
  • The effect of ABA on the chloroplast disassembly of Zea mays was investigated by measuring the changes in the relative distribution of chlorophyll(Chl) between the Chl-protein complexes in ABA treated and untreated sensecting leaves. The reaction center(RC)-light harvesting complex(LHC) regions were rapidly disassembled in the late stage of dark-induced senescence. Plus, during dark-induced senescence, the disassembly of a reaction center of P700 apoproteins containing mainly Chl a was faster than that of a reaction center of LHCI apoproteins containing both Chl a and Chl b. The increase in the relative distribution of Chl-protein complexes in the RC-Core2 in the late stage of senescence was due to the accumulation of core complexes such as CP47/43 and reaction centers including D1/D2 apoproteins disassembled from the RC-Corel containing the dimer of D1/D2 apoproteins. The LHCII region was more stable than the other Chl-protein complexes throughout leaf senscence. Accordingly, it is suggested that the preferential breakdown of Chl a gives rise to the disassembly of Chl a-binding proteins, particularly reaction centers and core complexes during dark-induced senescence, plus the primary target of the photosynthetic apparatus in sensecing leaves would seem to be Chl a along with the proteins associated with Chl a. The application of ABA promoted the disassembly of the P700 apoproteins in the PSI reaction center and the dimer of D1/D2 apoproteins, and the conversion of the trimeric LHCII apoprotein to the monometirc LHCII apoprotein during the middle stage of leaf senescence, thereby suggesting that ABA accelerates the disassembly of both Chl a-binding and Chl a+b-binding proteins, particularly Chl a-binding proteins during the middle stage of leaf senescence.

  • PDF