• Title/Summary/Keyword: Copper removal

Search Result 330, Processing Time 0.033 seconds

Removal of Bromate by Iron, Copper and Silver Impregnated Activated Carbon (철, 구리, 은 첨착활성탄을 이용한 브롬산염의 제거)

  • Choi, Seong-Woo;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.178-182
    • /
    • 2006
  • The purpose of this research is to remove the bromate that is a disinfection by-poduct of water purification by ozone. I achieved a high rate of removal with iron, copper, or silver impregnated activated carbon by using both the adsorbing power of granular activated carbon and the oxidizing power of metal ions as deoxidizing agents. In the removal test of bromate with the quantity of activated carbon input I injected each activated carbon by 0.1, 0.3, 0.1, and 1.0 g and let them react for 240 minutes. I found the quantity of removed bromate was in proportion to the amount of input. The removal rate of bromate increased about 20% when I used acid treated activated carbon. The metal impregnated activated carbon had a higher removal rate of bromate than that of general activated carbon by about $30{\sim}50%$. Iron impregnated activated carbon showed a 92% removal rate of bromate. Iron, copper, or silver impregnated activated carbon removed about $0.9{\sim}1.5mg\;{BrO_3}^-/g$ while general activated carbon removed about $0.02{\sim}0.45mg\;{BrO_3}^-/g$. In the continuous column reaction, there were breakthrough phenomena at 96, 180, and 252 hours when I tested EBCT by 1, 2 and 3 minutes while I was changing the flux rate of bromate from 15.6 to 46.8 mL/min.

Bioremediation of Heavy Metals from the Land Application of Industrial Sewage Sludge with Minari (Oenanthe stolonifer DC.) Plant

  • Lee, Myoung-Sun;Youn, Se-Young;Yim, Sang-Choel;Park, Hee-Joun;Shin, Joung-Du
    • Plant Resources
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 1998
  • Laboratory experiments for the removal efficiency of heavy metals in land application of sludge, the accumulation and translocation of heavy metals in x plants after transplanting, and the responses of Minari growth with different ratio of land application of sludge were conducted to determine the potential ability of bioremediation with Minari plants. The removal rate and translocation of copper. zinc. lead. and cadmium in soil and plants were compared after transplanting the Minari plants to soil treated with different ratio of sludge. The removal efficiency of heavy metals in soil incorporated with sludge was different with application ratio, but increased with growing periods of Minari plants. The removal efficiency of Cu, Zn, Pb, and Cd ranged from 67 to 74% from 51% to 63%, from 37% to 71%. and from 15% to 25% after 45 days of transplanting. respectively. The amount removed the copper value. 65.9 mg/kg, observed to be highest in soil incorporated 3% sludge after 45 days. The translocation of Cu. Zn. Pb. and Cd from shoots to roots ranged from 18 to 53%, from 17 to 32%, from 14 to 49%, and from 23 to 38% over growing periods. respectively. In plant responses it appeared to be inhibited the plant growth in the treatment compared with the control at early stage of growth. However, the fresh weights of Minari plant increased from 12.5 to 62.5% in the sludge application after 45 days relative to the control. Therefore the Minari might play a useful role in bioremediation of Cu, Zn, Pb, and Cd in the land application of sludge.

  • PDF

The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning (더미 미생물용출에 의한 폐-광석으로부터 유용금속 용해 특성과 Fe 제거와 전기분해를 이용한 금속구리분말 회수)

  • Kim, Bong-JuK;Cho, Kang-Hee;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2014
  • In order to recover the metallic copper powder from the mine-waste rock, heap bioleaching, Fe removal and electrowinning experiments were carried out. The results of heap leaching with the mine-waste rock sample containing 0.034% Cu showed that, the leaching rate of Cu were 61% and 62% in the bacteria leaching and sulfuric acid leaching solution, respectively. Sodium hydroxide (NaOH), hydrogen peroxide ($H_2O_2$) and calcium hydroxide ($Ca(OH)_2$) were applied to effectively remov Fe from the heap leaching solution, and then $H_2O_2$ was selected for the most effective removing Fe agent. In order to prepare the electrolytic solution, $H_2O_2$ were again treated in the heap leaching, and Fe removal rates were 99% and 60%, whereas Cu removal rates were 5% and 7% in the bacteria and sulfuric acid leaching solutions, respectively. After electrowinning was examined in these leaching solution, the recovery rates of Cu were obtained 98% in bacteria and obtained 76% in the sulfuric leaching solution. The dendritic form of metallic copper powder was recovered in both leaching solutions.

Interaction between Selenium and Bacterium and Mineralogical Characteristics of Biotreated Selenium (셀레늄-미생물간의 반응 및 셀레늄 광물화 특성)

  • Lee, Seung-Yeop;Oh, Jong-Min;Baik, Min-Hoon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.217-224
    • /
    • 2011
  • Removal of dissolved selenium by D. michiganensis, a iron-reducing bacterium, and effects of dissolved metal elements such as iron, sulfate, and copper were investigated. Selenide that was reduced from selenite (2 mM) by D. michiganensis was gradually removed from the aqueous medium. As the reduced selenide was combined with aqueous iron, it was precipitated as a nanoparticulate iron-selenide. Sulfate and copper negatively affected the microbial selenite reduction, and the copper was especially toxic to the bacterium, inhibiting a microbial removal of dissolved selenite. These results show that it should be carefully biotreated for a selenium-contaminated site considering in situ sulfate or copper distribution and concentration. Consequently, the formation of iron-selenide by bacteria will be an important measure for preventing a long-distance migration of selenium in the subsurface environments.

A Study on Removal of Harmful, Heavy Metals in Fly Ash from Municipal Incinerator

  • Nakahiro, Yoshitaka
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.489-493
    • /
    • 2001
  • Big cities in Japan have serious problems due to the shortage of new reclaimed land for municipal wastes. If harmful heavy metals such as cadmium, lead, copper and etc. are contained in the municipal waste combustion residues, they are not able to fill up according to the environmental law in Japan. In this study, the removal of heavy metals in the fly ash (EP ash) was dealt with chloridizing vaporization method. EP ash as a non-hazardous materials is utilized as covering materials, road bed, and building materials.

  • PDF

Sorption of copper ion on waste pig bone (돼지 폐(廢) 골분(骨粉)에 의한 구리이온 흡착(吸着))

  • Kim, Eun-Jung;Woo, Sung-Hoon;Park, Seung-Cho
    • Resources Recycling
    • /
    • v.15 no.2 s.70
    • /
    • pp.45-49
    • /
    • 2006
  • The removal of copper ion from aqueous solution by adsorption with bone char that made from spent pig bone has been studied. This paper was studied the effects of bone char dosage and pH. The optimal results show that bone char adsorbs about 96.5 percent of copper ion in aqueous solution containing 50 mg/L as initial concentration at pH 5.0 when the bone char of 5g/L is used for 30 hours. Increase in the initial pH of the copper solution resulted in an increase in the copper ion uptake per weight of the sorbent Freundlich isotherm model was found to be applicable for the experimental data of $Cu^{2+}$.

Surface Treatment Technology for Metal Corrosion Layer Focusing on Copper Alloy

  • Yang, Eun-Hee;Han, Won-Sik;Choi, Kwang-Sun;Lee, Young-Hoon;Ham, Chul-Hee;Hong, Tae-Kee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2014
  • Using alkali treatment solution, neutrality treatment solution and acid treatment solution, the surface corrosion layer of copper plates and bronze plates that have been artificially corroded using HCl, $H_2SO_4$ and $HNO_3$ solutions were removed. In the case of alkali treatment solution, only air oxidation in the form of black tenorite and white cuproous chloride remained without being removed. In the case of using a neutrality treatment solution, a anhydrous type layer of reddish brown cupric chloride remained without being removed, together with this black and white corrosion substance. In the case of using an acid treatment solution, this red corrosion substance also remained, but all of the oxide was removed on the surface of the specimen that was treated by alternatively using alkali treatment solution and acid treatment solution. In the case of this treatment solution with the order of alkali-acid, oxidation no longer proceeded only through the distilled water cleaning process after treatment, thereby showing that oxidation from the cleaning solution no longer proceeded.

Effects of Concentration of Electrolytes on the Electrochemical Properties of Copper (전해액의 농도가 Cu 전극의 전기화학적 특성에 미치는 영향)

  • Lee, Sung-Il;Park, Sung-Woo;Han, Sang-Jun;Lee, Young-Kyun;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.82-82
    • /
    • 2007
  • The chemical mechanical polishing (CMP) process has been widely used to obtain global planarization of multilevel interconnection process for ultra large scale. integrated circuit applications. Especially, the application of copper CMP has become an integral part of several semiconductor device and materials manufacturers. However, the low-k materials at 65nm and below device structures because of fragile property, requires low down-pressure mechanical polishing for maintaining the structural integrity of under layer during their fabrication. In this paper, we studied electrochemical mechanical polishing (ECMP) as a new planarization technology that uses electrolyte chemistry instead of abrasive slurry for copper CMP process. The current-voltage (I-V) curves were employed we investigated that how this chemical affect the process of voltage induced material removal in ECMP of Copper. This work was supported by grant No. (R01-2006-000-11275-0) from the Basic Research Program of the Korea Science.

  • PDF

Removal Characteristics of Cu(II) ion in Aqueous Solution by Solid-Phase Extractant Immobilized D2EHPA and TBP in PVC (D2EHPA와 TBP를 PVC에 고정화한 고체상 추출제를 사용한 수용액 중의 Cu(II) 이온 제거특성)

  • Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.

Effect of Copper on the Properties of ZSM-5 Catalyst Fabricated by Mechanical Alloying Method (기계적합금화법에 의해 제조된 ZSM-5촉매특성에 미치는 Cu의 영향)

  • 안인섭
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.153-158
    • /
    • 1996
  • The exhaust gas from vehicle engines and industrial boilers contains considerable amount of harmful nitrogen monoxide(NO) which causes air pollusion and acid rain. To remove NO catalytic reduction processes using Cu ion exchanged ZSM-5 zeolite have been widely studied. In this study, an attempt was made to fabricate Cu/zeolite catalyst by using high energy ball mill. The catalytic performance of ball milled Cu/ZSM-5 zeolites is analyzed and optimum copper contents was determined. The processing variables were reaction temperature and copper contents. Complete removal of NO gas was obtained at the temperature of 553 K on 10wt.% CU/ZSM-5 mechanically alloyed composite powders. Mechanically alloyed CU/ZSM-5 catalyst showed homogeneous distribution of Cu in ZSM-5.

  • PDF