• Title/Summary/Keyword: Copper recycling

Search Result 196, Processing Time 0.027 seconds

Recycling Industries of Urban mine Resources in Taiwan (대만(臺灣)의 도시광산(都市鑛山) 재자원화산업(再資源化産業))

  • Oh, Jae-Hyun;Kim, Joon-Soo;Moon, Suk-Min;Min, Ji-Won
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.23-35
    • /
    • 2011
  • In order to review the recycling status of urban mine resources in Taiwan, background and history of recycling industries, system of the recovery fund management committee(RFMC), copper recycling with non-ferrous metals, recycling of ELV(end of life vehicles) and recycling of EAF dust were surveyed. Taiwan is a leading country of the world in the metal consumption per capita. Therefore, a lot of waste metals were generated. In other words, urban mine resources are abundant in Taiwan and have some advantages in recycling. There are more than thou-sand recycling plants in Taiwan. Half of them are non-ferrous metal recyclers.

A Study on the Improvement of Property of Concrete using Copper Slag and Fly ash (동슬래그 및 플라이애쉬를 혼합하여 제작한 콘크리트의 성능 향상 연구)

  • Kim, Chun Ho;Lee, Won Goo;Kim, Nam Wook
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Generally, when using copper slag mixed into the concrete, due to higher weight of copper slag, a reduction in the compressive strength and durability of the hardened concrete to increased bleeding is caused. In this study, hence copper slag, a kind of by-product was used as an alternative to the fine aggregate, it was carried out in combination with the use of fly ash in eliminating disadvantage and recycling aspects. As a result of this study, the mixing of fly ash is decreased in the 50% of bleeding, 5% of drying shrinkage, 30% of carbonation test and improvement of 10% of compressive strength than that of copper slag only at most.

MINERAL PROCESSING and COPPER EXRACTIVE METALLURGY Complete Metal Recovery

  • Kim, J.Y.
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.22-34
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and Dore furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyre-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution (실리콘 슬러지로부터 폐질산구리용액을 이용한 구리 및 금속불순물의 침출)

  • Jun, Minji;Srivastava, Rajiv Ranjan;Lee, Jae-chun;Jeong, Jinki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.11-19
    • /
    • 2016
  • A fundamental study to recycle a Si-Sludge and waste copper nitrate solution acid solution generated by domestic electronic industries was carried out. The waste copper nitrate solution was used as the lixiviant to leach the metals like Cu, Ca, Fe, etc. from the sludge leaving Si in the residues. The effect of reaction temperature, time and pup density on the metals leaching from the sludge was investigated. To enhance the extractability of Fe, the effect of HCl, $HNO_3$ and $H_2O_2$ introduced additionally during the leaching was also examined. Considering the leaching efficiency of Fe along with Cu, the leaching conditions comprising of 200 ~ 225 g/L pulp density and $90^{\circ}C$ temperature for 30 min were optimized. Under this condition, 98.27 ~ 99.17% Cu could be dissolved in the leach liquor with the obtained purity of Si in the residues as 98.69 ~ 98.86 %. The study revealed that the leaching of Cu contained in the Si-Sludge with the waste copper nitrate solution is a plausible approach by which the obtained leach liquor can further be treated suitably to recover Cu as the high pure value-added products.

Recovery of Copper from Sludge of Copper Electro-Plating Plant (동전해도금공장 Sludge로부터 동의 회수)

  • Young-Gil Hwang;Youn-Soo Kim;Jae-Il Kim
    • Resources Recycling
    • /
    • v.5 no.3
    • /
    • pp.31-36
    • /
    • 1996
  • The metallic copper was recovered from sludge of the copper electro-plating plant by pyrometallurgical process. The reducing agent was Pyrolysized from waste tires and the flux was a mixture $Na_2CO_3$, $NaB_4O_7$, and glass. The green sludge contained 87.5% moisture and 12.5% solid with 56.5% Cu and 1.59% Fe. The sludge dried at $100^{\circ}C$ was analyized to be $Cu_4SO_4(OH)_6{\cdot}2H_2O$ and CuO by XRD analysis. The former was 84% and the latter 16%, However, the calcined sludge at $500^{\circ}C$ was 49% $Cu_2O(SO_4)$ and 51% CuO. The sludge could by smelted at $1100^{\circ}C$ for two hours with 6 to 8 moles carbon with respect to copper to produce metallic copper (>90%) with recovery of 9% above.

  • PDF

Biosorption of Copper Ions by Recycling of Castanea crenata (밤나무 재활용에 의한 구리 이온의 생물흡착)

  • Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.307-311
    • /
    • 2014
  • In this present study, Castanea crenata was found as an excellent biosorbent for the removal capability of copper ions among four different wood wastes (Castanea crenata, Pinus densiflora, Larix kaemoferi and Robinia pseudoacaia). Also, the removal efficiencies of 5, 10, 20, 40 and 50 mg/L copper ions using Castanea crenata from aqueous solution were investigated. The most effective particle size of Castanea crenata for removing 5 mg/L copper ions was found to be $43{\sim}63{\mu}m$. When the concentration of Castanea crenata increased, the removal efficiencies of copper ions were enhanced. In addition, when the 0.8 g/100 mL of Castanea crenata was used for 30 min, the removal efficiencies of 20 and 40 mg/L copper ions were 99% and 85%, respectively. Moreover, the chemical treatment of Castanea crenata with 1 M sodium acetate was required to improve the removal ability for 50 mg/L copper ions. Meanwhile, 1 M hydrochloric acid was selected as the optimal desorption agent with 93% desorption efficiency of copper ions for recycling of modified Castanea crenata. Therefore, these experimental results could be employed as economical and practical engineering data for the development of copper removal processes.

Selective Removal of Cu in Ferrous Scrap by Chlorine gas (염소가스에 의한 철 스크랩 중 Cu의 선택적 제거)

  • Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.54-60
    • /
    • 2018
  • The quality of steel produced from scrap can be adversely affected because of the buildup of tramp elements in recycled scrap. The tramp element of greatest concern is copper because of its effect on steel quality, even in small percentage quantities. In this study, possibility of removal of copper from ferrous scrap by using $Cl_2$ gas is experimentally examined in a small size experimental apparatus. Synthetic ferrous scraps containing copper were reacted with $Cl_2$ gas in various atmosphere. The copper was chloridized and evaporated, whereas iron was oxidized and was not reacted with Cl2 and oxygen mixture gas.

Evaporation Rate of Lead in Molten Copper Alloy by Gas Injection (가스취입에 의한 용융 동 합금 중 납의 증발속도)

  • Kim, Hang-Su;Jeong, Seong-Yeop;Jeong, U-Gwang;Yun, Ui-Han;Son, Ho-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.68-74
    • /
    • 2002
  • The lead has to be removed for the recycling of copper alloy. The lead cannot be removed from the copper alloy by oxidation. It can be removed by the evaporation because of its high vapor pressure. However, rare information is found on removal of lead from copper alloy. The purpose of present work is to provide a fundamental knowledges on the removal of lead from the copper alloy by evaporation. Gas injection was made in molten copper alloy, and the evaporation rate of lead was measured. The influence of Ar gas flow rata(2~4 L/min), initial contents of lead(2~4wt%Pb), temperature(1200~140$0^{\circ}C$) was investigated based on the thermodynamic and the kinetics. The rate constant is increased with increasing flow rate of Ar and temperature. Though amount of lead removed is increased with higher initial lead concentration, the rate constant is not changed significantly. The activation energy is estimated from the temperature dependence of the rate constant. Also removal of lead from the copper by adding chloride was made for the comparison.

Separation of Enamel from the Enamel Coated Coper Wires Via High Frequency Induction Process (에나멜코팅된 구리코일로 부터의 친환경적(親環境的) 구리선의 분리(分離))

  • Song, Yong-Ho;Kim, Jeong-Min;Park, Joon-Sik;Kong, Man-Sik;Lee, Caroline Seun-Young
    • Resources Recycling
    • /
    • v.21 no.3
    • /
    • pp.48-55
    • /
    • 2012
  • Recently, the recycling with environmentally friendly method has been an issue for various fields. An effective removal method of coating layers from coated copper wires is one critical factor for recycling copper wire. We have adopted a high frequency heating routine for removing the coating layers on the coated copper wires, and attempted to find optimum conditions. The experimental results show that the copper wires should be maintained at or above $950^{\circ}C$ for rapid removal of the polyester. The simulation and experimental results are discussed with respect to the microstrucrual evolution during heating of the copper wires.

Solvent Extraction for the Recovery of Copper from Hydrochloric Etching Solutions by Alamine336 (염산에칭폐액으로부터 Alamine336에 의한 구리의 용매추출에 관한 연구)

  • 안재우;염재웅
    • Resources Recycling
    • /
    • v.6 no.3
    • /
    • pp.9-14
    • /
    • 1997
  • A study has been made of the rccovery of copper (11) by solvent extraction with Alamine336 (Tri-n-oclylamine) as a extractant from hydrochloric etching solutions. The effect of extractant concentrations, hydrochloric acid, chloride Ion concentrations and phase ratio (organiclaqueaus) on copper extraction were studied. Experimental results showed that the concenl~atiano f extractant and the phase ratio strongly influenced the copper extraction, and the extraction percent of capper Increased at higher hydrochloric acid and chloride ion mncmhation. We proposed that the optimum extrachon stages of copper for continuous extraction process by analysidng thc McCabe-Thielc diagram. Stripping of copper from the loaded organic phases wn be accomplished by pure water (H, O) as a dripping reagent effectively. As the tcmpcrature is increased, thc stripping of copper is enhanced.

  • PDF