• Title/Summary/Keyword: Copper pipe

Search Result 176, Processing Time 0.027 seconds

Research of Flow Electrification Phenomena of the used Environment-Friendly Vegetable Insulating Oils (친환경 식물성절연유의 유동대전현상 연구)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.580-584
    • /
    • 2012
  • The insulating oils perform a cooling and insulation action in electric power transformer. The mineral oil has immanent fire dangerousness and environmental contamination problem. Vegetable insulating oil has higher ignition point, flash point and more excellent biodegradability than conventional mineral oil. In a real oil-filled transformers, some of the power is dissipated in the form of heat. And transformer require the heat to be removed from the winding and insulator by forced convection of the insulating oil. The flow electrification occurs when insulating oil was forced to be circulated. In this paper, influence of temperature, velocity of flow, and insulating pipe and diameter on streaming electrification of vegetable insulating oil was investigated using forced circulation apparatus. Temperature effects were most significant, and it showed a peak in the temperature $30^{\circ}C$ to $35^{\circ}C$ at insulating and copper pipe. The change of flow electrification according to area variety could be checked by change of diameter.

A Characteristic Comparison of Copper Pipe and Strain less Pipe used in Fire Protection System (소방배관에 사용되는 동관과 스테인리스관의 특성 비교)

  • Nam, Jun-Seok;Lee, Young-Sik;Kim, Yeong-Ho;Won, Sung-Yun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.200-206
    • /
    • 2010
  • 건축환경의 변화에 따라 최근 스테인리스배관을 소방배관에 사용하고자 하나 국가화재안전기준에 관련근거가 없어 사용이 어려운 것이 현실이다. 따라서 본 논문에서는 이 기준에서 사용할 수 있는 배관가운데 동관(KS D 5301)과 일반배관용 스테인리스 배관(KS D 3595)의 성능비교를 통하여 사용가능성을 확인하였다. 비교한 성능은 강도, 내식성 및 내열성이며 유한요소해석과 관련 시험을 통해 성능을 비교한 결과 동등이상임을 확인할 수 있었다.

  • PDF

A Comparative Study of Heat Pipes with Enlarged Condenser Section for Evacuated Solar Collectors (확관 응축부를 갖는 진공관형 태양열 집열기용 히트파이프 성능 비교 연구)

  • Boo, Joon-Hong;Chung, Won-Bok;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.18-25
    • /
    • 2002
  • For application to medium temperature solar collerctors $(80\sim120^{\circ}C)$, a heat pipe should be designed properly to efficiently transfer heat to a hotter condenser than common applications. Among many wick structure candidates for heat pipes of this type, a slab wick was selected based on promising performance data reported previously. The thermal performance of slab wick heat pipes, screen wick heat pipes and thermosyphons with enlarged condenser section were experimentally investigated for comparison purpose. The heat pipes were 8.0 mm O.D. (evaporator section) and 25.4 mm O.D. (condenser section) made of copper. The experimental data of the heat pipes were analysed in terms of thermal resistance against thermal load and coolant temperature.

A Theoretical Analysis on the Factors Affecting the Operation of Loop Heat Pipe (루프 히트파이프의 작동에 영향을 미치는 인자에 대한 이론적 분석)

  • Lee Ki-Woo;Chun Won-Pyo;Lee Wook-Hyun;Park Ki-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1107-1116
    • /
    • 2004
  • In this paper, the effects of diverse parameters on the operation of loop heat pipe (LHP), such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity were investigated by a theoretical analysis. A LHP has a wick only in its evaporator for the circulation of working fluid, and utilizes a porous wick structure of which pore size is very small to obtain a large capillary force. The working fluid is water and the material of sintered porous wick is copper. For these different parameters, capillary pressure, pressure drop in wick, pressure drops and temperature distribution were analyzed by a theoretical design method of LHP.

The Effect of Copper on Feeding Characteristics in Al-Si Alloys

  • Young-Chan Kim;Jae-Ik Cho
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.294-301
    • /
    • 2023
  • The effects of Cu on feeding and macro-porosity characteristics were investigated in hypo- (A356 and 319) and hypereutectic (391) aluminum-silicon alloys. T-section and Tatur tests showed that the feeding and macro-porosity characteristics were significantly different between the hypo- and hypereutectic alloys. The hole and the pipe in the T-section and the Tatur casting in hypereutectic alloy showed a rough and irregular shape due to the faceted growth of the primary silicon, while the results of the hypoeutectic alloys exhibited a rather smooth surface. However, the addition of Cu did not strongly affect the macro-feeding behavior. It is known that copper segregates and interferes the feeding process in the last stage of solidification, possibly leading to form more amount of micro shrinkage porosity by the addition of Cu. The macro porosity formation mechanism and feeding properties were discussed upon T-section and Tatur tests together with an alloying addition.

Study on Performance Evaluation of Oscillating Heat Pipe Heat Exchanger for Low Temperature Waste Heat Recovery

  • Bui, Ngoc-Hung;Kim, Ju-Won;Jang, In-Seung;Kang, Jeong-Kil;Kim, Jong-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.73-81
    • /
    • 2003
  • The performance of heat exchanger using oscillating heat pipe (OHP) for low temperature waste heat recovery was evaluated. OHP used in this study was made from low finned copper tubes connected by many turns to become the closed loop of serpentine structure. The OHP heat exchanger was formed into shell and tube type. R-22 and R-141b were used as the working fluids of OHP with a fill ratio of 40 vol.%. Water was used as the working fluid of shell side. As the experimental parameters, the inlet temperature difference between heating and cooling water and the mass velocity of water were changed. The mass velocity of water was changed from 30 kg/$m^2$s to 92 kg/$m^2$s. The experimental results showed that the heat recovery rate linearly increased as the mass velocity and the inlet temperature difference of water increased. Finally, the performance of OHP heat exchanger was evaluated by $\varepsilon$-NTU method. It was found that the effectiveness would be 80% if NTU were about 1.5.

An Experimental Study on Hydration Heat Control in The Mass Concrete Using Oscillating Capillary Tube Heat Pipe (진동세관형 히트파이프(OCHP)를 이용한 매스콘크리트의 수화열 제어에 관한 실험적 연구)

  • Beak, Dong-Il;Kim, Myung-Sik;Lee, Moon-Sik;Kim, Kang-Min;Yum, Chi-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.409-412
    • /
    • 2006
  • In process of reinforced concrete(RC) box structure, the heat of hydration may cause serious thermal cracking problems. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control in mass concrete using the OCHP(Oscillating Capillary tube Heat Pipe). Recently OCHP is drawn special attention from these points of low cost as well as short construction schedule for the manufacturing of heat exchanger, flexibility, simplification and high performance. There were three RC box molds$(1.2{\times}1.2{\times}1.2m)$ which shows a difference as compared with each other. One was not equipped with OCHP. While others were equipped with OCHP and these were cooled with air natural convection and spraying water respectively. The OCHP was composed of copper pipe with 12 turns(O.D : 4mm, I.D : 2.8mm). The working fluid was R-22 and its charging ratio was 30(Vol. %). In order to analyze the distribution of temperature and index figure of thermal crack in sequential placement of mass concrete, we used HYCON of computer program. As a result of the experiment, the peak temperature decreased about $15.6\sim23.4^{\circ}C$ than the general specimen and the probability of thermal crack generated in mass concrete decreased up to 0%.

  • PDF

A Study on Field Applications of Hydration Heat Control in the Mass Concrete Using Oscillating Capillary Tube Heat Pipe (OCHP를 이용한 매스콘크리트 수화열 제어의 현장적용에 관한 연구)

  • Yum, Chi-Sun;Bae, Won-Mahn;Kim, Myung-Sik;Beak, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.413-416
    • /
    • 2006
  • In process of the mass concrete structure, the heat of hydration may cause serious thermal cracking. In order to eliminate hydration heat of mass concrete, this paper reports results of hydration heat control of mass concrete using the Oscillating Capillary tube Heat Pipe(OCHP). There were the several RC box molds which shows a difference as compared with each other. One was not equipped with OCHP. The others were equipped with OCHP. All of them were cooled with natural air convection. The OCHP was composed of copper pipe with 11 turns(outer diameter : 4mm, inner diameter : 2.8mm) and heat type was non-looped type. The working fluid was R-22 and its charging ratio was 40% by volume. The core of the concrete temperature was approximately $55^{\circ}C$ in the winter without OCHP. But the concrete temperature with OCHP was reduced its difference in temperature with the outdoor temperature to $12^{\circ}C$. Finally we saw the index figure of the thermal crack of the structures were varied from 0.75 to 1.47.

  • PDF

Analysis of Thermal Control Characteristics of VCHP by the Charging Mass of Non-Condensible Gas (불응축가스 주입량에 따른 VCHP의 열제어 특성)

  • Suh Jeong-Se;Park Young-Sik;Chung Kyung-Taek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1139-1144
    • /
    • 2005
  • This study has been performed to investigate the thermal performance of variable conductance heat pipe (VCHP) with meshed wick. The length of condenser portion in a VCHP is varied by the expansion of inert gas with the operation temperature, and the heat transport capacity is thus varied with the operating temperature. In this study, numerical evaluation of the VCHP is made for the thermal performance of VCHP, based on the diffusion model of inert gas. Water is used as a working fluid and nitrogen as a control inert gas in the copper tube. As a result, the thermal performance of VCHP has been compared with that of constant conductance heat pipe (CCHP) according to the variation of operation temperature. Maximum heat transport capacity of VCHP is mainly presented for operation temperature and the variation of operation temperature is also presented for heat transfer rate of VCHP.

Reliability Evaluation of ER Type Corrosion Sensor for Monitoring Corrosion of Piping System Under Accelerated Corrosion Environment (배관의 부식 상태 진단에 사용되는 ER 부식센서의 가속부식환경에서의 신뢰성 평가)

  • Hwang, Hyun-Kyu;Shin, Dong-Ho;Kim, Heon-Hui;Lee, Jung-Hyung
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.403-411
    • /
    • 2021
  • In this study, the reliability of a commercial ER-type corrosion sensor was evaluated under an accelerated corrosion environment to verify its suitability for application in monitoring of ship's seawater piping system. A closed-loop pump piping testbed was designed and constructed to compare the wall thickness reduction of the pipe and the response from the sensor. The sensor was attached inside the pipe near the outlet of the pump that was exposed to a 3.5% NaCl solution with or without copper accelerated acetic acid (CASS). The results demonstrated that the presence of CASS significantly increased the corrosivity of the solution as well as the thickness reduction of the pipe, as expected. On the other hand, the corrosion products formed by the solution with CASS were thicker compared with those without CASS. The sensor response to temperature variation was found to be a clear linear relationship for the solution without CASS but there was a non-linear relationship where CASS was present.