• Title/Summary/Keyword: Copper nanowire

Search Result 25, Processing Time 0.026 seconds

Application of Carbon Nanotube Encapsulating Nanowire (탄소나노튜브로 둘러싸인 나노와이어 구조의 오실레이터 응용)

  • Song, Young-Jin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.4
    • /
    • pp.1-4
    • /
    • 2007
  • Carbon nanotube oscillators encapsulating copper nanowire were investigated by molecular dynamics simulations. The excess forces due to the carbon-carbon van der Waals interactions are higher than the excess force due to carbon-copper interactions. And the masses of copper atoms are higher than those of carbon atoms. So, the carbon atoms are easier accelerated than the copper atoms. When the encapsulated copper nanowire deforms the encapsulating nanotube, the frequency can not be estimated by the mass-frequency dependence in classical oscillation theory.

  • PDF

Enhancement of Electrical Conductivity in Silver Nanowire Network for Transparent Conducting Electrode using Copper Electrodeposition (구리 전기도금 방법을 이용한 은 나노와이어 투명전극의 전기전도도 향상)

  • Ji, Hanna;Jang, Jiseong;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.311-316
    • /
    • 2019
  • Transparent conducting electrodes are essential components in various optoelectrical devices. Although indium tin oxide thin films have been widely used for transparent conducting electrodes, silver nanowire network is a promising alternative to indium tin oxide thin films owing to its lower processing cost and greater suitability for flexible device application. In order to widen the application of silver nanowire network, the electrical conductance has to be improved while maintaining high optical transparency. In this study, we report the enhancement of the electrical conductance of silver nanowire network transparent electrodes by copper electrodeposition on the silver nanowire networks. The electrodeposited copper lowered the sheet resistance of the silver nanowire networks from $21.9{\Omega}{\square}$ to $12.6{\Omega}{\square}$. We perform detailed X-ray diffraction analysis revealing the effect of the amount of electrodeposited copper-shell on the sheet resistance of the core-shell(silver/copper) nanowire network transparent electrodes. From the relationship between the cross-sectional area of the copper-shell and the sheet resistance of the transparent electrodes, we deduce the electrical resistivity of electrodeposited copper to be approximately 4.5 times that of copper bulk.

Analysis of Mechanical Behavior of Nanowire by $Nos\acute{e}-Poincar\acute{e}$ Molecular Dynamics Simulation ($Nos\acute{e}-Poincar\acute{e}$ 분자 동역학 알고리즘을 이용한 나노 와이어의 역학적 거동 해석)

  • Lee, Byeong-Yong;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.506-511
    • /
    • 2007
  • Mechanical behavior of copper nanowire is investigated. An FCC nanowire model composed of 1,408 atoms is used for MD simulation. Simulations are performed within NVT ensemble setting without periodic boundary conditions. $Nos\acute{e}-Poincar\acute{e}$ MD algorithm is employed to guarantee preservation of Hamiltonian and temperature. Numerical tensile tests of Nanowire are carried out with constant strain rate. Additionally, temperature and strain rate effects are considered. Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values. In (22,4,4) Copper nanowire, non-linear behavior appears around ${\epsilon}\simeq0.09.$ At this instance, starting of structural reorientations are observed. At the onset of reorientation, the modulus characteristics are also investigated.

  • PDF

Bending Characteristics of Single Crystalline Copper Nanowires (단결정 구리 나노와이어의 굽힘 특성)

  • Jung, Kwang-Sub;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1896-1901
    • /
    • 2008
  • Single crystalline copper nanowires are subjected to bending tests using molecular dynamics simulations and the embedded atom method. To observe behaviors of nanowire, bending tests are performed for various rates of deflection and different boundary conditions: fixed-free and fixed-fixed. When the deflection of nanowire becomes large, twinnings and dislocations appear, and <100> crystal structure transforms to <110>. At high rates, phase transformation occurs in whole nanowire. But, at low rates, atomic structure changes to <110> phase partially. The final deformed structures are affected by the rate of deflection and boundary conditions. These effects can be important design parameters at nanoscale.

  • PDF

Analysis of Mechanical Behavior of Nanowire by Molecular Dynamics Simulation (분자동역학을 이용한 나노 와이어의 역학적 거동 해석)

  • Lee, Byeong-Yong;Cho, Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.433-438
    • /
    • 2007
  • Mechanical behavior of copper Nanowire is investigated, An FCC Nanowire model composed of 1,408 atoms is used for NID simulation, Simulations are performed within NVT ensemble setting without periodic boundary conditions, Nose-Poincare MD algorithm is employed to guarantee preservation of Hamiltonian. Numerical tensile tests are carried out with constant strain rate, Stress-strain curve is constructed from the calculated Cauchy stresses and specified strain values, Non-linear behavior appears around $\varepsilon$=0.064, At this instance, starting of structural reorientations are observed.

  • PDF

Copper Sulfide Nanowires for Solar Cells (태양전지용 $Cu_2S$ 나노와이어의 제작 및 특성분석)

  • Lim, Young-Seok;Kang, Yoon-Mook;Kim, Won-Mok;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.166-169
    • /
    • 2006
  • We fabricated hexagonal copper sulfide $Cu_2S$ nanowires to obtain a larger contact area of $Cu_2S/CdS$ solar cell. Copper sulfide nanowires were grown on Cu foil at room temperature by gas-sol id reaction. The size, density and shape of nanowires seemed to be affected by the change or reaction time temperature, crystallographic orientation of Cu foil, and molar ratio of the mixed gas. We controled the length and the diameter of the nanowires and we obtained suitable nanowire arrays which has fitting size for uniform deposition with n-type CdS. CdS layer was deposited on the nanowire array by electrodeposition and it seemed to be uniform. The $Cu_2S/CdS$ nanowires/CdS junction showed diode characteristics, A large contact area is expected with the $Cu_2S/CdS$ nanowire structure as compared with the $Cu_2S/CdS$ thin film.

  • PDF

Review on Oxidation Resistance Technology for Copper Nanowire Transparent Electrodes (구리 나노와이어 투명 전극의 산화 방지 기술)

  • Gieop Lee;Hokyun Rho;Hyung Gu Kim;Jun-Seok Ha
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.21-32
    • /
    • 2023
  • CuNWs(Copper nanowires) are attracting attention as a transparent electrode material because of their excellent electrical conductivity, high mechanical flexibility, and cost-effectiveness. However, since copper nanowires are easily oxidized, there is a disadvantage that properties of the transparent electrode may be deteriorated due to this, and researches are being conducted to improve this. Accordingly, in this review, various methods and studies to prevent oxidation and improve stability of copper nanowire transparent electrodes by using coating materials such as carbon-based materials, metals, and conductive polymers are introduced. Through this, we intend to provide solutions to solve the problem of development and oxidation of copper nanowire-based technology.

Mechanical Behavior of Cu Nanowire under Cyclic Loading (반복하중을 받는 구리 나노 와이어의 기계적 거동)

  • Lee, Sang-Jin;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1784-1787
    • /
    • 2008
  • Molecular dynamics (MD) simulations are used to analyze behavior of copper nanowires under cyclic loading. The embedded atom method (EAM) potential is employed to represent atomic interaction. Cyclic load is applied in two ways (Forward Tension / Reverse Compression and Forward Compression / Reverse Tension). The results show that dislocations are piled up as a result of plastic deformation during alternate tensile and compressive loading. After cyclic loading with a change of direction, yield stress decreases in consequence of the effect by the dislocation pileups. On the other hand, under FC/RT cyclic load, phase transformation represent associated with mechanical twinning. And copper nanowire can return to almost former undeformed condition during tensile loading at 300K.

  • PDF

Synthesis of Core-shell Copper nanowire with Reducible Copper Lactate Shell and its Application

  • Hwnag, Hyewon;Kim, Areum;Zhong, Zhaoyang;Kwon, Hyeokchan;Moon, Jooho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.430.1-430.1
    • /
    • 2016
  • We present the concept of reducible fugitive material that conformally surrounds core Cu nanowire (NW) to fabricate transparent conducting electrode (TCE). Reducing atmosphere can corrodes/erodes the underlying/surrounding layers and might cause undesirable reactions such impurity doing and contamination, so that hydrogen-/forming gas based annealing is impractical to make device. In this regards, we introduce novel reducible shell conformally surrounding indivial CuNW to provide a protection against the oxidation when exposed to both air and solvent. Uniform copper lactate shell formation is readily achievable by injecting lactic acid to the CuNW dispersion as the acid reacts with the surface oxide/hydroxide or pure copper. Cu lactate shell prevents the core CuNW from the oxidation during the storage and/or film formation, so that the core-shell CuNW maintains without signficant oxidation for long time. Upon simple thermal annealing under vacuum or in nitrogen atmosphere, the Cu lactate shell is easily decomposed to pure Cu, providing an effective way to produce pure CuNW network TCE with typically sheet resistance of $19.8{\Omega}/sq$ and optical transmittance of 85.5% at 550 nm. Our reducible copper lactate core-shell Cu nanowires have the great advantage in fabrication of device such as composite transparent electrodes or solar cells.

  • PDF

Growth and analysis of Copper oxide nanowire

  • Park, Yeon-Woong;Seong, Nak-Jin;Jung, Hyun-June;Chanda, Anupama;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.245-245
    • /
    • 2009
  • l-D nanostructured materials have much more attention because of their outstanding properties and wide applicability in device fabrication. Copper oxide(CuO) has been realized as a p-type metal oxide semiconductor with narrow band gap of 1.2 -1.5eV. Copper oxide nanostructures can be synthesized by various growth method such as oxidation reaction, thermal evaporation thermal decomposition, sol-gel. and Mostly CuO nanowire prepared on the Cu substrate such as Copper foil, grid, plate. In this study, CuO NWs were grown by thermal oxidation (at various temperatures in air (1 atm)) of Cu metal deposited on CuO (20nm)/$SiO_2$(250nm)/Si. A 20nm-thick CuO layer was used as an adhesion layer between Cu metal and $SiO_2$

  • PDF