• 제목/요약/키워드: Copper deposition

검색결과 382건 처리시간 0.027초

Electro-oxidation of Cyclohexanol on a Copper Electrode Modified by Copper-dimethylglyoxime Complex Formed by Electrochemical Synthesis

  • Hasanzadeh, Mohammad.;Shadjou, Nasrin.;Saghatforoush, Lotfali.;Khalilzadeh, Balal.;Kazeman, Isa.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2943-2948
    • /
    • 2009
  • Copper-dimethylglyoxime complex (CuDMG) modified Copper electrode (Cu/CuDMG) showed a catalytic activity towards cyclohexanol oxidation in NaOH solution. The modified electrode prepared by the dimethylglyoxime anodic deposition on Cu electrode in the solution contained 0.20 M $NH_4Cl\;+\;NH_4OH\;(pH\;9.50)\;and\;1\;{\times}\;10^{-4}$ M dimethylglyoxime. The modified electrode conditioned by potential recycling in a potential range of -900${\sim}$900 mV vs. Ag/AgCl by cyclic voltammetry in alkaline medium (1 M NaOH). The results show that the CuDMG film on the electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in alkaline medium via Cu (III) species formed on the electrode.

Determination of Copper in Uniformly-Doped Silicon Thin Films by Isotope-Dilution Inductively Coupled Plasma Mass Spectrometry

  • 박창J.;차명J.;이동S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.205-209
    • /
    • 2001
  • Uniformly-doped silicon thin films were fabricated by ion beam sputter deposition. The thin films had four levels of copper dopant concentration ranging between 1 ${\times}$1019 and 1 ${\times}$ 1021 atoms/cm3 . Concentrations of Copper dopants were determined by the isotope dilution inductively coupled plasma mass spectrometry (ICP-MS) to provide certified reference data for the quantitative surface analysis by secondary ion mass spectrometry (SIMS). The copper-doped thin films were dissolved in a mixture of 1 M HF and 3 M HNO3 spiked with appropriate amounts of 65 Cu. For an accurate isotope ratio determination, both the detector dead time and the mass discrimination were appropriately corrected and isobaric interference from SiAr molecular ions was avoided by a careful sample pretreatment. An analyte recovery efficiency was obtained for the Cu spiked samples to evaluate accuracy of the method. Uncertainty of the determined copper concentrations, estimated following the EURACHEM Guide, was less than 4%, and detection limit of this method was 5.58 ${\times}$ 1016 atoms/cm3.

구리의 선택적 전착에서 결정 입자의 크기가 전기적 접촉성에 미치는 영향 (Effect of the particle size on the electrical contact in selective electro-deposition of copper)

  • 황규호;이경일;주승기;강탁
    • 한국결정성장학회지
    • /
    • 제1권2호
    • /
    • pp.79-93
    • /
    • 1991
  • 초 고집적 회로의 시대로 접어들면서 지금까지의 금속선 형성 기술 및 배선 재료에 많은 문제점들이 나타나고 있다. 알루미늄의 대체 재료로서 검토되고 있는 구리를, 전기 화학적 방법에 의해 미세 접촉창에 선택적으로 충전함으로써 새로운 금속선 형성 기술을 제시하고자 하였다. 0.75M의 황산구리 수용액을 전해액으로 사용하여 p형 (100) 규소 박판위에 구리 전착막을 형성한 후 Alpha Step, 주사 전자 현미경, 4-탐침법을 사용하여 막의 두께, 입자 크기, 비저항을 측정함으로써 전착 시간, 전류 밀도, 첨가물로 사용한 젤라틴 농도가 전착막의 성질에 미치는 영향에 대해 조사하였다. 평균 전착 속도는 전류 밀도가 $ 2A/dm^2$일 때 0.5-0.6\mu\textrm{m}$/min 였고 구리 입자의 크기는 전류밀도 증가에 따라 증가하였다. 입자 크기 $4000{\AA}$이상에서 얻어진 비저항값은 3-6 Ω.cm였다. 젤라틴을 첨가하여 입자의 크기를 $0.1\mu\textrm{m}$이하로 감소시킴으로써 크기 $1\mu\textrm{m}$이하의 접촉장에 구리를 선택적으로 충전시키는데 성공하였다.

  • PDF

Adhesion Improvement for Copper Process in TFT-LCD

  • Tu, Kuo-Yuan;Tsai, Wen-Chin;Lai, Che-Yung;Gan, Feng-Yuan;Liau, Wei-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1640-1644
    • /
    • 2006
  • The first issue that should be overcome in copper process is its poor adhesive strength between pure copper film and glass substrate. In this study, defining the adhesive strength of pure copper film on various substrates and clarifying the key deposition parameters are presented for the investigation of copper process. First, using different kinds of surface plasma treatments were studied and the results showed that the adhesive strength was not improved even though the roughness of glass substrate surface was increased. Second, adding an adhesive layer between glass substrate and pure copper film was used to enhance the adhesion. Based on the data in the present paper, adopting copper alloy film as an adhesive layer can have capability preventing peeling problem in copper process. Besides, Cu/Cu alloy structure could be etched with the same etchant with better taper angle than the one with single layer of Cu. Unlike Cu/Mo structure, there is no residual problem for Cu/Cu alloy structure during etching process. Finally, this structure was examined in electrical test without significant difference in comparison with the conventional metal process.

  • PDF

불화칼륨이 첨가된 피로인산구리 도금욕에서 마그네슘합금의 전기도금 (Electroplating on Magnesium Alloy in KF-Added Pyrophosphate Copper Bath)

  • 이정훈;김용환;정우창;정원섭
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.218-224
    • /
    • 2010
  • Direct copper electroplating on Mg alloy AZ31B was carried out in a traditional pyrophosphate copper bath containing potassium fluoride. Electrochemical impedance spectroscopy and polarization methods were used to study the effects of added potassium fluoride on electrochemical behavior. The chemical state of magnesium alloy in the electroplating bath was analyzed by X-ray photoelectron spectroscopy. Adhesion of the copper electroplated layer was also tested. Due to the added potassium fluoride, a magnesium fluoride film was formed in the pyrophosphate copper bath. This fluoride film inhibits dissolution of Mg alloy and enables to electroplate copper directly on it. A dense copper layer was formed on the Mg alloy. Moreover, this copper layer has a good adhesion with Mg alloy substrate.

Temperature and the Interfacial Buffer Layer Effects on the Nanostructure in the Copper (II) Phthalocyanine: Fullerene Bulk Heterojunction

  • Kim, Hyo Jung;Kim, Jang-Joo;Jeon, Taeyeol;Kong, Ki Won;Lee, Hyun Hwi
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.275.1-275.1
    • /
    • 2014
  • The effects of the interfacial buffer layer and temperature on the organic bulk heterojunction (BHJ) nanostructures of copper phthalocyanine (CuPc) and fullerene (C60) systems were investigated using real time in-situ x-ray scattering. In the CuPc:C60 BHJ structures, standing-on configured ${\gamma}$-CuPc phase was formed by co-deposition of CuPc and C60. Once formed ${\gamma}$-phase was thermally stable during the annealing upon $180^{\circ}C$. Meanwhile, the insertion of CuI buffer layer prior to deposition of the CuPc:C60 BHJ layer induced lying-down configured CuPc crystals in the BHJ layer. The lying CuPc peak intensity and the lattice parameter were increased by the thermal annealing. This increment of the intensity seemed to be related to the strain at the interface between CuPc:C60 and CuI, which was proportional to the enhancement of the power conversion efficiency of the device.

  • PDF

Deposition Optimization and Property Characterization of Copper-Oxide Thin Films Prepared by Reactive Sputtering

  • You, Yil-Hwan;Bae, Seung-Muk;Kim, Young-Hwan;Hwang, Jinha
    • 마이크로전자및패키징학회지
    • /
    • 제20권1호
    • /
    • pp.27-31
    • /
    • 2013
  • Copper-oxide (CuO) thin films were prepared by reactive sputtering of Cu onto Si wafers and characterized using a statistical design of experiments approach. The most significant factor in controlling the electrical resistivity and deposition rate was determined to be the $O_2$ fraction. The deposited CuO thin films were characterized in terms of their physical and chemical properties, using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), X-ray diffraction (XRD), and 4-point resistance measurements. The deposited copper thin films were characterized by XPS and XRD analyses to consist of $Cu^{2+}$. The CuO thin films of highest resistivity exhibited superior rectifying responses with regard to n-type Si wafers, with a current ratio of $3.8{\times}10^3$. These superior responses are believed to be associated with the formation of a charge-depletion region originating from the p-type CuO and n-type Si materials.

산화제 배합비에 따른 연마입자 크기와 Cu-CMP의 특성 (The Cu-CMP's features regarding the additional volume of oxidizer)

  • 김태완;이우선;최권우;서용진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.20-23
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing(CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical polishing(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commercial slurries pads, and post-CMP cleaning alternatives are discuss, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper deposition is a mature process from a historical point of view, but a very young process from a CMP perspective. While copper electro deposition has been used and studied for decades, its application to Cu damascene wafer processing is only now gaining complete acceptance in the semiconductor industry. The polishing mechanism of Cu-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper passivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

CVD법에 의해 성막된 구리의 표면 형상 및 충진 특성에 관한 연구 (Surface Morphology and Hole Filling Characteristics of CVD Copper)

  • 김덕수;선우창신;박돈희;김진혁;김도형
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.98-102
    • /
    • 2005
  • 본 연구에서는 유기금속 전구체인(HFAC)Cu(DMB)을 이용하여 구리를 제조하고, 기판온도 및 요오드 화합물이 증착 구리막의 표면 형상 및 충진 특성에 미치는 영향을 살펴보았다. 증착 온도가 높을수록 표면 형상이 거칠어지고 충진 특성이 악화되었으며, 요오드를 사용하여 증착할 경우 표면 거칠기와 충진 특성이 개선됨을 알 수 있었다. 이때 요오드 화합물과 전구체를 동시에 반응기에 유입할 경우보다 구리의 씨앗층을 증착하고 요오드 화화물을 반응기에 유입한 후 다시 구리 증착을 진행하는 경우가 좀 더 효과가 컸다.

복합도금법으로 형성된 탄소나노튜브-구리 복합구조물의 전계방출특성 (Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures Formed by Composite Plating Method)

  • 성우용;김왈준;이승민;유형석;이호영;주승기;김용협
    • 한국표면공학회지
    • /
    • 제38권4호
    • /
    • pp.163-166
    • /
    • 2005
  • Carbon nanotube-copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes (MWNTs) synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field was about $3.0\;V/{\mu}m$ with the current density of $0.1\;{\mu}A/cm^2.$ We observed relatively uniform emission characteristics as well as stable emission current Carbon nanotube-copper composite plating method is efficient and it has no intrinsic limit on the deposition area. Moreover, it gives strong adhesion between emitters and an electrode. Therefore, we recommend that carbon nanotube-copper composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.