• 제목/요약/키워드: Copper Smelting

검색결과 40건 처리시간 0.03초

Characterization of a Smelting Furnace in Ungyo Site in Wanju, Jeollabuk-do, Through Slag Analysis

  • Lee, Su Jeong;Cho, Nam Chul;Kang, Byoung Sun
    • 보존과학회지
    • /
    • 제35권4호
    • /
    • pp.373-383
    • /
    • 2019
  • We characterized the smelting process and smelting furnace through scanning electron microscopy-energy dispersive spectroscopy, wavelength dispersive X-ray fluorescence, X-ray diffraction, and raman micro-spectroscopy with 13 relics including slags and furnace walls excavated from square-shaped building sites and pits of the Three Kingdoms site at the Ungyo site section I. Our results revealed that the principal components were FeO and SiO2; and CuO, PbO, and ZnO were contained in small quantities. Furthermore, fayalite, magnetite, augite, copper, and cuprite were found. High contents of FeO or SiO2 components seem to have been added to form fayalite to remove gangue in the smelting process. The relatively low content of S detected in the copper prills suggests that roasting was performed well. Cristobalite and mullite, which are minerals that indicate high-temperature found in the furnace wall, show that the smelting temperature was higher than 1,250℃. The findings of this study show a high possibility that the Wanju Ungyo site is smelting remains of copper ores, which are nonferrous metals, rather than iron. Various smelting byproducts excavated in this area in the future will help us better understand the copper smelting process that may have been performed since ancient times.

콘크리트용 동슬래그 골재의 활용 기술 (The Application of Copper Smelting Slag as Concrete aggregate)

  • 지석원;서치호
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.68-75
    • /
    • 2006
  • The total production of the smelted copper reaches 450,000 tons per year, and the production of copper-related goods grows year by year owing to the extension of facilities and the development of production techniques. On the other hand, the volume of slag discharges by-produced at the time of copper smelting process is also on trend of increase. The by-produced copper smelting slag amounts to 700,000 tons a year, which is one and half times of the total smelted copper production. Accordingly nobody disagrees that comprehensive researches on how to deal with and how to reuse the accumulated smelting copper slag have to be encouraged. Even though the possible uses of the copper smelting slag have being made on various levels at present as materials for iron powder cement, sand-blasting and fire-proofing rock wool, but a considerable volume of the slag is abandoned as unnecessary by burying or piling up in careless in the open ground.

  • PDF

국내·외 고대 구리 제련기술 및 유적에 대한 문헌적 고찰 (A Literature Review on Ancient Smelting Technology and Sites of Copper)

  • 김소진;이은우;황진주;한우림
    • 헤리티지:역사와 과학
    • /
    • 제48권4호
    • /
    • pp.126-137
    • /
    • 2015
  • 우리나라에서의 청동기 연구는 출토 유물의 분석을 통해 제작기술을 추정하는 연구가 주를 이루고 있으나 그 중 제련에 대한 연구는 부족하다. 이는 구리 제련과 관련된 문헌의 부족 및 제련 유적이 발견되지 않은 원인이 가장 크다고 할 수 있다. 구리 제련기술이 독자적으로 발전되었을 가능성도 있지만 다른 나라로부터의 영향도 무시할 수 없으므로 국내 외에서 보고된 연구 자료를 비교해보는 것은 우리나라의 구리 제련기술을 추정하는데 많은 도움을 줄 것이라 생각된다. 따라서 본 연구에서는 국내 외 구리 제련기술과 관련된 문헌 연구를 통해 제련방법에 대해 정리하고 각 국의 구리 제련 유적을 비교함으로써 제련기술에 대한 기초적 자료를 제공하고자 하였다.

동제련 슬래그를 혼입한 모르타르의 강도 특성 연구 (The Study on Properties of Mortar with Copper Smelting Slag)

  • 박조범;지석원;서치호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.263-268
    • /
    • 2000
  • Recently, the recycling of the by-products was attempted to various fields. One of the major industry, the copper manufacturing industry produced a lot slags. in this study, the copper smelting slag was used to use practically application for the aggregate of concrete. To find the optimum mixing ratio of mortar with the copper smelting slag as substitution for sand, the mixing ratio was increased 1:2 to 1:5 step by step and every mixture was contained 5 steps sand substitutive ratio. The substitutive ratio of sand was increased 25% st대 by step from 0% to 100%. The result of this study was shown as follows. 1. In the every mixture, as the substitutive ratio was increased, the flow was decrease 3.64% from 18cm, and the unit content weigth was increased 5.5% in average. 2. The property of the strength was judged that it was more affected W/C and mixing ratio than the copper smelting slag.

  • PDF

동제련 슬래그를 사용한 콘크리트의 경시별 유동특성에 관한 실험적 연구 (A Study on the Flowing Characteristic of Concrete with Copper Smelting Slag)

  • 김정욱;지석원;이세현;전현규;유택동;서치호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.319-324
    • /
    • 2001
  • Recently new practical use way of industry product is required. In this study, to find flowing property of slump, unit weight, the air amount, compressive strength etc. Compressive strength 240, 270kgf/$cm^{2}$, slump 8$\pm$2.5(I), 152$\pm$.5(II)cm, mixing ratio of copper smelting slag decided by 0, 25, 50, 75, 100% gradually, The result of this study was follows ; 1. Unit weight increased 2.2%~4.4% according as mixing ratio of copper smelting slag increases. 2. Slump increased about 2~5% as the mixing ratio increased gradually 3. Compressive strength was increased about 4~28% in copper smelting slag mixing ratio 25~50% and 8~20% decreased more than mixing ratio 75%.

  • PDF

Total value recovery in the copper smelting and refining operations

  • Kim Joe. Y.;Kong Bong S.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.590-597
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and $Dor\'{e}$ furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyro-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

MINERAL PROCESSING and COPPER EXRACTIVE METALLURGY Complete Metal Recovery

  • Kim, J.Y.
    • 한국자원리싸이클링학회:학술대회논문집
    • /
    • 한국자원리싸이클링학회 2003년도 추계정기총회 및 국제심포지엄
    • /
    • pp.22-34
    • /
    • 2003
  • Processing and smelting of copper containing sulphide concentrates result in the accumulation of impurities into various process streams. All primary copper smelters and refineries around the world produce significant amounts of slag, dust, sludge, residues and others, which contain copper and precious metals. The recovery of these valuable metals is essential to the overall economics of the smelting process. Physical, chemical and mineralogical characterization of particular slag and Cottrell dusts from primary smelters and Dore furnace (TBRC) slag and Pressure Leached Anode slimes from a copper refinery have been carried out to understand the basic behind the recovery processes. Various process options have been evaluated and adapted for the treatment of slag from different smelting furnaces and Cottrell dusts as well as the intermediate products from copper refineries. Besides the hydro- or pyre-metallurgical treatments, the above mentioned physical separation options such as magnetic, gravity separation, flotation and precipitation flotation processes have been successfully identified and adapted as the possible process options to produce a Cu-rich or precious metal-rich concentrates for in-house recycling and other valued by-product for further treatment. The results of laboratory, pilot plant and production operations are presented, and incorporation of several alternative flowsheet is discussed in this paper.

  • PDF

도시광산(都市鑛山) 재자원화(再資源化)기술의 모듈과 한국(韓國)의 비철제련(非鐵製鍊) 프로세스 (Technological Modules for the Recycling of Urban Mines and Non-Ferrous Smelting Processes in Korea)

  • 오재현;김준수;문석민;민지원
    • 자원리싸이클링
    • /
    • 제21권1호
    • /
    • pp.3-16
    • /
    • 2012
  • 도시광산 재자원화기술의 모듈과 한국의 비철제련 프로세스를 파악하기 위하여 재자원화기술의 전체상과 요소기술, 물리선별, 비철제련 프로세스 및 바람직한 도시광산 처리기술의 단위조작을 밝히고, LS-Nikko동제련(주)과 고려아연(주)의 리싸이클링 프로세스를 탐색하였다. 끝으로 일본의 대표적인 비철제련소인 DOWA Holdings 및 JX Holdings 리싸이클링 프로세스와 한국의 위 두 비철제련소의 리싸이클링 프로세스를 비교검토 하였다.

제련설비용 대전류 동 Bus Bar의 온도해석 (Analysis of High Current Copper Bus Bar Temperature in Smelting Plants)

  • 곽병길;김창환;최병주;김규호;이상봉
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.26-32
    • /
    • 2014
  • In electrolysis smelting plants that using high DC current, the bus bar is most important facility for delivering the high current. The copper made bus bar is widely used for various advantages as good electrical and thermal conductivity, resonable malleability, ductility, and not rust easily. However, when high current in copper bus bar, temperature rises and maximum allowable current capacity is restricted by temperature of bus bar. In this paper, we investigated temperature variation of copper bus bar by putting cooling water channel imposed to bus bar construction. For the validity, various simulations were carried out.

6~7C 부여 관북리 유적의 동 생산기법 연구 (A Study of Copper Production Techniques at the Archaeological Site in Gwanbukri, Buyeo in the 6th and 7th Centuries)

  • 이가영;조남철
    • 보존과학회지
    • /
    • 제36권3호
    • /
    • pp.162-177
    • /
    • 2020
  • 부여 관북리 유적에서 시행된 동 생산 및 제련과정을 살펴보기 위하여 '나'지구, '라'지구 출토동 생산 부산물(동 슬래그 및 동 도가니) 11점의 과학적 분석을 시행하였다. 분석방법은 파장분산형 X-선 형광 분석, X-선 회절 분석, 금속 현미경 관찰, 주사 전자현미경-에너지 분산형 X-선 분석기, 전계방출 전자탐침미량분석기, 라만 마이크로분광분석법을 사용하였다. 분석결과 관북리 동 슬래그에서는 주로 도가니 슬래그 및 정련 슬래그에서 전형적인 특징으로 나타나는 규산염 광물, Magnetite, Fayalite, Delafossite 등이 검출되었다. 또한 관북리 동 슬래그는 외형 및 미세조직의 양상의 특성에 따라 1. 유리질 바탕 기지 + Cu prill, 2. 유리질 바탕 기지 + Cu prill + Magnetite, 3. 규산염 광물 바탕 기지 + Cu prill, 4. 결정질(Delafossite, Magnetite)/유리질(비정질) 바탕 기지 + Cu prill, 5. Magnetite + Fayalite, 6. 청동합금 슬래그로 분류되었다. 미세조직 내에는 SiO2, Al2O3, CaO, SO4 P2O5, Ag2O, Sb2O3 등의 불순물이 잔재되어 있으며, 일부는 주석과 납이 합금되어 있는 것을 확인하였다. 이와 같은 결과를 통해 부여 관북리 유적에서는 동 생산과정 중 배소와 제련을 거친 동 중간생성물의 정련과 불순물이 함유된 동-주석, 또는 동-주석-납의 합금정련을 시행하였다고 판단된다.