• 제목/요약/키워드: Copper/low k

검색결과 595건 처리시간 0.025초

APPLICATION OF COLD SPRAY COATING TECHNIQUE TO AN UNDERGROUND DISPOSAL COPPER CANISTER AND ITS CORROSION PROPERTIES

  • Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won;Kim, Hyung-Jun
    • Nuclear Engineering and Technology
    • /
    • 제43권6호
    • /
    • pp.557-566
    • /
    • 2011
  • A cold spray coating (CSC) of copper was studied for its application to a high-level radioactive waste (HLW) disposal canister. Several copper coatings of 10 mm thick were fabricated using two kinds of copper powders with different oxygen contents, and SS 304 and nodular cast iron were used as their base metal substrates. The fabricated CSC coppers showed a high tensile strength but were brittle in comparison with conventional non-coating copper, hereinafter defined to as "commercial copper". The corrosion behavior of CSC coppers was evaluated by comparison with commercial coppers, such as extruded and forged coppers. The polarization test results showed that the corrosion potential of the CSC coppers was closely related to its purity; low-purity (i.e., high oxygen content) copper exhibited a lower corrosion potential, and high-purity copper exhibited a relatively high corrosion potential. The corrosion rate converted from the measured corrosion current was not, however, dependent on its purity: CSC copper showed a little higher rate than that of commercial copper. Immersion tests in aqueous HCl solution showed that CSC coppers were more susceptible to corrosion, i.e., they had a higher corrosion rate. However, the difference was not significant between commercial copper and high-purity CSC copper. The decrease of corrosion was observed in a humid air test presumably due to the formation of a protective passive film. In conclusion, the results of this study indicate that CSC application of copper could be a useful option for fabricating a copper HLW disposal canister.

Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium

  • Yoon, Bo-Young;Yeom, Ji-Hyun;Kim, Jin-Sik;Um, Si-Hyeon;Jo, Inseong;Lee, Kangseok;Kim, Yong-Hak;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제37권2호
    • /
    • pp.100-108
    • /
    • 2014
  • Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu,Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.

알루미늄의 부식으로 발생한 알루미늄 이온에 의한 인 제거 (Phosphorus Removal by Aluminium Ion Generated with the Pitting Corrosion of Aluminium)

  • 정경훈;정오진
    • 한국환경과학회지
    • /
    • 제8권6호
    • /
    • pp.705-710
    • /
    • 1999
  • The fundamental experiments on the phosphorus removal from water were carried out by the batch and continuous reactors which used aluminium and copper plate. In this systems, the phosphorus was removed by aluminium ion generated with the electrochemical interaction (pitting corrosion) of aluminium and copper. In the batch experiments, the efficiencies of phosphorus removal increased when the surfaces of aluminium and copper plate were brushed. The phosphorus removal by aluminium ion was affected the copper plate and NaCI in this system. The optimal pH values were 5 and 6 for the phosphorus removal. The efficiency of phosphorus removal increased with increasing NaCI concentration, surface area of aluminium and copper plate. The $CUSO_4{\cdot}5H_2O$ instead of copper plate could be used as Cu source. The effluent $PO_4-P$ concentration as low as 2 $mg/{\ell}$ could have been obtained during the continuous experiment at HRT of 48 hrs.

  • PDF

무산소동 소재를 활용한 태양광 일렉트로드 바디 단조 부품 개발 (Development of Forging Parts for Solar Electrode Body Using Oxygen-Free Copper Material)

  • 박동환;탁윤학
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.28-35
    • /
    • 2016
  • Forging operations are non-stationary processes occurring because of indirect pressure, generally, under conditions of three-dimensional stress and deformation. Furthermore, due to friction and the constraints of die geometry, deformation is not homogeneous. Material flow and deformation are largely determined by the shape of the tools. It is well known that net-shape forging can improve the mechanical strength of the final product as well as reduce material waste. Oxygen-free copper that is used for electrical and electronic components has excellent electrical and thermal conductivity. Oxygen-free copper parts have a low productivity in cutting process. Thus, the forging process is performed in order to improve the low productivity in cutting process. The forging of oxygen-free copper for electrode body parts was modeled using finite element simulation and forging experiments that were conducted for producing electrode body parts at room temperature. In order to reduce the cost of cutting products, the forging was performed in a closed cavity to obtain near-net or net-shape parts.

1-Octanethiol이 코팅된 나노 구리 분말을 이용한 나노 잉크의 분산도에 대한 연구 (Investigation of Dispersion Stability of Conductive Nano Ink Using 1-Octanethiol Coated Copper Nano Powders)

  • 조단이;백종환;박중학;이선영
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.417-422
    • /
    • 2012
  • Copper nano particles have been considered as the materials for conductive ink due to its good thermal, electrical conductivity and low cost. However, copper nanoparticles oxidize easily, decreasing dispersion stability and electrical conductivity. Therefore, it is important to develop a method to minimize oxidation of copper nano particles to improve its dispersion stability property in copper nano ink. In this study, copper nano particles were coated with 1-Octanethiol VSAM(Vaporized Self Assembled Multilayers) to prevent oxidation and coated copper powders were dispersed in conductive ink successfully by studying its relationship of different chain length of solvents to 1-Octanethiol coating layer to fabricate nano ink. Various alcohol solvents, such as 1-Hexanol, 1-Octanol, and 1-Decanol were used. The coating layer was observed using FESEM and TEM. Furthermore, dispersion of copper nano particles in nano inks, was characterized using Turbiscan analyzer, viscometer, and contact angle measurement tool.

CeO2 코팅을 통한 Cu 입자의 입성장 억제 효과에 관한 연구 (Effect of CeO2 Coating on the Grain Growth of Cu Particles)

  • 유희준;문지웅;오유근;문주호;황해진
    • 한국분말재료학회지
    • /
    • 제12권6호
    • /
    • pp.413-421
    • /
    • 2005
  • Copper is able to work as a current collector under wide range of hydrocarbon fuels without coking in Solid oxide fuel cells (SOFCs). The application of copper in SOFC is limited due to its low melting point, which result in coarsening the copper particle. This work focuses on the sintering of copper powder with ceria coating layer. Ceria-coated powder was prepared by thermal decomposition of urea in $Ce(NO_3)_3\cdot6H_2O$ solution, which containing CuO core particles. The ceria-coated powder was characterized by XRD, ICP, and SEM. The thermal stability of the ceria-coated copper in fuel atmosphere $(H_2)$ was observed by SEM. It was found that the ceria coating layer could effectively hinder the grain growth of the copper particles.

Mineral Concentration in Blood of Grazing Goats and Some Forage in Lahar-Laden Area of Central Luzon, Philippines

  • Orden, E.A.;Serra, A.B.;Serra, S.D.;Aganon, C.P.;Cruz, E.M.;Cruz, L.C.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권3호
    • /
    • pp.422-428
    • /
    • 1999
  • The mineral status of native goats and forage species, namely; Cynodon plectostachyus, Pennisetum purpureum. Eleusine indica, Cynodon dactylon, Calopogonium muconoides, Centrosema pubescens, Leucaena leococephala, and Mimosa pudica in lahar affected areas of Concepcion, Tarlac, Philippines were determined. Forage and blood samples were collected six times in 1996-97, and analyzed for calcium, phosphorus, magnesium, sulfur, copper, iron, molybdenum, selenium, and zinc. Forage calcium and sulfur are non-limiting. Most species had low phosphorus, copper and selenium, while some had magnesium and zinc levels lower than the critical limit because of low mineral content and high percolation rate of lahar deposits. Iron and molybdenum were in excess. The effect of seasonal variation was observed only in copper, sulfur and iron. Average blood mineral concentration of the animals was above critical limit, but there were no significant differences between seasons. All the animals had plasma phosphorus and magnesium above critical level; but 20 % had low copper, zinc and selenium especially in dry season possibly due to insufficient amount of these elements and excessive molybdenum and iron in most forage. Conversely, calcium in forage was high; but 40 % of the animals had low plasma calcium concentration. Although no clinical signs of mineral deficiencies were observed, supplemental feeding would be important since the condition of the pasture in lahar-laden areas is not expected to improve in the next five years. Intensified use of L. leucocephala with better mineral profile would be ideal.

구리 프탈로시아닌으로 표면처리된 흑연 음극의 속도특성 및 저온성능 개선 (Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine)

  • 정선형;박상진;류지헌;오승모
    • 전기화학회지
    • /
    • 제18권3호
    • /
    • pp.130-135
    • /
    • 2015
  • 흑연 분말을 프탈로시아닌 또는 구리 프탈로시아닌과 함께 비활성 분위기에서 각각 열처리하여 표면처리를 진행하였고, 이의 속도특성과 저온 작동특성을 조사하였다. 표면처리 후 흑연 분말의 표면에 비정질 탄소와 구리의 코팅 층이 균일하게 형성되었다. 표면처리를 통하여 흑연 전극의 속도특성이 개선되는 것을 확인하였는데, 특히 구리 프탈로시아닌으로 처리한 경우 속도특성의 향상이 두드러졌다. 흑연 전극의 저항을 교류 임피던스와 펄스 저항측정법을 활용하여 조사하였는데, 구리 프탈로시아닌으로 처리된 흑연 전극의 경우가 저항이 가장 작았다. 프탈로시아닌으로 부터 유도된 비정질 탄소 층이 리튬이온의 확산을 용이하게 하고, 구리 프탈로시아닌으로부터 유도된 금속상태의 구리는 전자 전도도를 증가시키기 때문에 저항을 감소시키는 것으로 판단된다.

Effects of Organic Additives on Residual Stress and Surface Roughness of Electroplated Copper for Flexible PCB

  • Kim, Jongsoo;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • 제6권4호
    • /
    • pp.154-158
    • /
    • 2007
  • For the application of flexible printed circuit board (FPCB), electroplated copper is required to have low surface roughness and residual stress. In the paper, the effects of surface roughness and residual stress of electroplated copper as thick as $8{\mu}m$ were studied on organic additives such as inhibitor, leveler and accelerator. Polyimide film coated with sputtered copper was used as a substrate. Surface roughness and surface morphology were measured by 3D-laser surface analysis and FESEM, respectively. Residual stress was calculated by Stoney's equation after measuring radius curvature of specimen. The addition of additives except high concentration of accelerator in the electrolyte decreased surface roughness of electroplated copper film. Such a tendency was explained by the function of additives among which the inhibitor and the leveler inhibit electroplating on a whole surface and prolusions, respectively. The accelerator plays a role in accelerating the electroplating in valley parts. The inhibitors and the leveler increased residual stress, whereas the accelerator decreased it. It was thought to be related with entrapped additives on electroplated copper film rather than the preferred orientation of electroplated copper film. The reason why additives lead to residual stress remains for the future work.