• Title/Summary/Keyword: Copper(I) catalysis

Search Result 5, Processing Time 0.016 seconds

Development of Ferrocene-Containing Metal Catalysts for Asymmetric Synthesis (페로센을 이용한 비대칭 유기합성용 금속 촉매의 개발)

  • Oh, Yunghee;Choi, Mi-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.804-807
    • /
    • 1999
  • New copper complexes with a ligand, L(L=N,N'-cyclohexane bis(ferrocenylmethylene)amine) which was obtained from ferrocene carboxaldehyde and 1,2-diaminocyclohexane with a mole ratio of 2:1, were prepared and characterized. Those were adapted to asymmetric catalysis. The copper(II) complexes do not work in cyclopropanation of styrene and ethyl diazoacetate but copper(I) complex catalyzes. The Cu(I)LOTf (OTf=trifluorometanesulfonate) shows a good regioselectivity giving high trans to cis ratio of up to 80:20.

  • PDF

Laboratory Experiment: Synthesis and Characterization of 4-Methyl-N-(phenylacetyl)benzenesulfonamide through Cu(I)-Catalysis

  • Jung, Byunghyuck
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.3
    • /
    • pp.187-190
    • /
    • 2018
  • A three-component coupling reaction of phenylacetylene, p-toluenesulfonyl azide, and water through copper catalysis is described to provide knowledge of spectroscopy and catalytic reactions and to introduce current research topics in organic chemistry for second-year undergraduate students. In the presence of stoichiometric amounts of phenylacetylene, p-toluenesulfonyl azide, and triethylamine, the reaction was performed with 4 mol% CuCl in water as the sole solvent and was completed in 1.5 h. A practical purification method and recrystallization of the crude reaction mixture resulted in the rapid isolation of the desired product with yields of 42~65%. Students characterized 4-methyl-N-(phenylacetyl)benzenesulfonamide by using melting-point determination, infrared spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. This experimental procedure and spectroscopic data analysis will serve as a platform for students to apply classroom knowledge in practical state-of-the-art research.

1,2-Ferrocenedilazaphosphinines 3:A New Class fo Planar Chiral Ligands for Cu-Catalyzed Cyclopropanation

  • Paek, Seung-Hwan;Co, Thanh Thien;Lee, Dong-Ho;Park, Yu-Chul;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.12
    • /
    • pp.1702-1708
    • /
    • 2002
  • The synthesis and catalytic application of a new class of a new class of planar chiral ferrocenes, 1,2-ferrocenediylazaphosphinines (1 and 2) are described. They are powerful ligands for the copper(I)-catalyzed asymmetric cyclopropanation of a range of alkenes with diazo esters to exhibit an exceptionally high degree of diastereoselectivity(~100% de) in favor of trans isomers, regardless the structure of the olefins and the diazo compounds. Comparative studies between 1 and 2 reveal that the former works better in terms of diastereocontrol. In contrast, however, enantioselectivity is low with both 1 and 2 as a whole although, in certain cases with a proper combination of the olefin and the diazo ester, high optical yields (up to 100% ee) can be achieved. Other reaction parameters such as the reaction temperature and the structure of the ligand do exhibit some influence, although infinitestimal, on both chemical and optical yields.

Characterization of immobilized laccase and its catalytic activities (고정된 laccase의 특성 및 촉매효과)

  • Hyung Kyung Hee;Shin Woonsup
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.31-37
    • /
    • 1999
  • Copper-containig enzyme, laccase (Rhus vernicifera) was immobilized onto gold electrode using self-assembly technique and its surface properties and catalytic activities were examined. Laccase is an oxidoreductase capable to oxidize diphenols or diamines by 4-electron reduction of molecular oxygen without superoxide or peroxide intermediates. The electrode surface were modified by $\beta-mercaptopropionate$ to have a net negative charge in neutral solution and positively charged laccase (pI=9) was immobilized by electrostatic interaction. The successful immobilization was confirmed by cyclic voltammograms which showed typical surface-confined shapes and behaviors. The amount of charge to reduce the surface was similar to the charge calculated assuming the surface being covered by monolayer. The activity of the immobilized enzyme was tested by the capbility of oxidizing a substrate, ABTS (2,2-azine-bis-(3-ethylbenzthioline-6-sulfonic acid) and it was maintained for $2\~3$ days at $4^{\circ}C$. The immobilzed laccase showed about $10\~15\%$ activity compared to that in solution. The laccase-modified electrode showed the activity of elefoocatalytic reduction of oxygen in the presence of mediator, $Fe(CN)_6^{3-}$ The addtion of azide which is an inhibitor of laccase compeletly eliminated the catalytic current.