• 제목/요약/키워드: Coordination control

검색결과 608건 처리시간 0.024초

코호넨 신경회로망을 이용한 ULTC 변압기와 STACOM의 협조제어 (Coordination Control of ULTC Transformer and STACOM using Kohonen Neural Network)

  • 김광원;이흥재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권9호
    • /
    • pp.1103-1111
    • /
    • 1999
  • STACOM will be utilized to control substation voltage in the near future. Although STACOM shows good voltage regulation performance owing to its rapid and continuous response, it needs additional reactive power compensation device to keep control margin for emergency such as fault. ULTC transformer is one of good candidates. This paper presents a Kohonen Neural Network (KNN) based coordination control scheme of ULTC transformer and STACOM. In this paper, the objective function of the coordination control is minimization of both STACOM output and the number of switchings of ULTC transformer while maintaining substation voltage magnitude to the predefined constant value. This coordination, control is performed based on reactive load trend of the substation and KNN which offers optimal tap position in view of STACOM output minimization. The input variables of KNN are active and reactive power of the substation, current tap position, and current STACOM output. The KNN is trained by effective Iterative Condensed Nearest Neighbor (ICNN) rule. This coordination control applied to IEEE 14 bus system and shows satisfactory results.

  • PDF

과포화교통상태에서의 SPLIT COORDINATION신호제어전략 (Green-Split Coordination Strategy in Oversaturated Signal System)

  • 이광훈
    • 대한교통학회지
    • /
    • 제11권1호
    • /
    • pp.87-103
    • /
    • 1993
  • The subject this paper is the signal control strategy under oversaturated conditions. The nature of traffic control for oversaturation is essentially different from the standard control modes. While under non-saturated situation traffic control is needed for the sake of safety and efficiency, the throughput is essential under oversaturated conditions. Therefore berth objective and strategies differ. For an oversaturated stream the cycle time and the signal offset are thought to be of rather secondary importance. For this case the green split may well be the most important control variable to serve the excessive demand. Up to now, however, most efforts have concentrated on the strategy with the concept which lies just on the extension of Webster's. "Green-split Coordination Strategy for Over-Saturated Networks", presents newly contrived three types of strategies named Forward-coordination, Backward-coordination and Network-coordination respectively and describes the algorithms with the evaluations. The forward coordination strategy treats the forward wave of flow between two signals. The aim is to prevent the outbreak of queue due to the accumulation of temporary excess of demand in near-saturation or saturation flow. The backward coordination strategy treats the backward rave of flow between two signals. The goal is to prevent the waste of green time caused by the exit block at the upstream signal. for this purpose a feedback regulation is provided of the upstream green-split so that the inflow-outflow balance is kept zero. The resultant surplus of green time is alloted to other signal stages. Also here the examination is made of the appropriate value of the feedback control parameter. The network coordination strategy is operated to maximize the network throughput in a specific direction applying a bang-bang control at the bottleneck intersection. This is a type of intervenient control for policy reasons. For this strategy the green-split coordinations, particuarly the backward coordination, are essential as the tactical elements. In order to evaluate the preposed strategies those are compared with the latest existing strategy called saturation-degree-ratio control by the simulation experiments in an assumed 4$\times$4 grid network. The results are satisfactory showing a 10-15% reduction in delays and a 15% increase in network capacity.

  • PDF

Coordination Control of Multiple Electrical Excited Synchronous Motors and Its Application in High-Power Metal-Rolling Systems

  • Shang, Jing;Nian, Xiaohong;Liu, Yong
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1781-1790
    • /
    • 2016
  • This study focuses on the coordination control problem of multiple electrical excited synchronous motor systems. A robust coordination controller is designed on the basis of cross coupling and an interval matrix. The proposed control strategy can deal with load uncertainty. In addition, the proposed control strategy is applied to a high-power metal-rolling system. Simulation and experiment results demonstrate that the proposed control strategy achieves good dynamic and static performance. It also shows better coordination performance than traditional proportional-integral controllers.

Spatial target path following and coordinated control of multiple UUVs

  • Qi, Xue;Xiang, Peng;Cai, Zhi-jun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.832-842
    • /
    • 2020
  • The coordination control of multiple Underactuated Underwater Vehicles (UUVs) moving in three dimensional space is investigated in this paper. The coordinated path following control task is decomposed into two sub tasks, that is, path following control and coordination control. In the spatial curve path following control task, path following error dynamics is build in the Serret-Frenet coordinate frame. The virtual reference object can be chosen freely on the desired spatial path. Considering the speed of the UUV, the line-of-sight navigation is introduced to help the path following errors quickly converge to zero. In the coordination control sub task, the communication topology of multiple UUVs is described by the graph theory. The speed of each UUV is adjusted to achieve the coordination. The path following system and the coordination control system are viewed as the feedback connection system. Input-to-state stable of the coordinated path following system can be proved by small gain theorem. The simulation experiments can further demonstrate the good performance of the control method.

태권도 뒤차기의 인체 관절과 분절사이의 협응 형태 (Interjoint and Intersegmental Coordination Pattern of Dwichagi in Taekwondo)

  • 이옥진;최지영;김승재
    • 한국운동역학회지
    • /
    • 제17권4호
    • /
    • pp.73-82
    • /
    • 2007
  • The purpose of this study was to qualitatively analyze coordination pattern of joints and segments during Dwichagi in Taekwondo and present a point of difference as compared with the previous study on Dolryeochagi in Taekwondo. By the utilization of three-dimensional cinematography, the angles of individual joints and segments of six male Taekwondo experts during Dwichagi were calculated by using Euler's angle. The used coordination variables were angle vs. angle plots between adjacent joints and segments and angle vs. angular velocity plots of individual joints and segments, respectively. It was observed during Dwichagi that in-phase coordination and spring-like rotational control mechanism of the lower and upper trunk were transferred into straight spring-like control mechanism of lower leg passing through flexion-extension and the fixation of degree-of-freedom of lower trunk and hip joint alternatively. This comparative study that coordination variables were used seems to be more useful research direction to deeply understand basic control mechanisms of Taekwondo kicking techniques when compared with the previous studies that defined Dwichagi as a thrust movement pattern merely based on biomechanical variables of a kicking leg.

DLT를 이용한 3차원 공간검증시 RMSE에 대한 통계학적 분석 (Statistical analysis for RMSE of 3D space calibration using the DLT)

  • 이현섭;김기형
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2003
  • The purpose of this study was to design the method of 3D space calibration to reduce RMSE by statistical analysis when using the DLT algorithm and control frame. Control frame for 3D space calibration was consist of $1{\times}3{\times}2m$ and 162 contort points adhere to it. For calculate of 3D coordination used two methods about 2D coordination on image frame, 2D coordinate on each image frame and mean coordination. The methods of statistical analysis used one-way ANOVA and T-test. Significant level was ${\alpha}=.05$. The compose of methods for reduce RMSE were as follow. 1. Use the control frame composed of 24-44 control points arranged equally. 2. When photographing, locate control frame to center of image plane(image frame) o. use the lens of a few distortion. 3. When calculate of 3D coordination, use mean of 2D coordinate obtainable from all image frames.

직류형 마이크로그리드의 전운전영역을 고려한 협조제어 (The Coordination Control of DC Microgrid on the Whole Operation Range)

  • 최대희;주수진;민용
    • 전기학회논문지
    • /
    • 제64권6호
    • /
    • pp.864-871
    • /
    • 2015
  • Recently, one of the main research on the power distribution system is the microgrid. The microgrid is a combination of power sources and loads, which is controllable and has separable connection. The main objective of microgrid is the deployment of the renewable clean energy and the enhancement of load-side reliability. The modern power sources and loads have DC I/O interfaces, which is the major advantage of DC microgrid compared to the conventional AC grid. The components in the microgrid have diverse features, so there is need of proper coordination control. For achieving economic feature, the active power of renewable energy resources is regarded as major control parameter and the whole operation modes of DC microgrid are defined, and the proper operations of each component are described. From the inherent characteristics of DC, there are two control variables: voltage and active power. Through analysis of operation modes, it is possible to determine exact control objectives and optimized voltage & power control strategy in each mode. Because of consideration of whole operation modes, regardless of the number and capacity of components, this coordination control method can be used without modification. This paper defines operation mode of DC microgrid with several DC sources and suggests economic and efficient coordinated control methods. Simulation with PSCAD proves effectiveness.

Comparison of Sitting Balance and Coordination in Children with Spastic Cerebral Palsy Using the Korean Version of Trunk Impairment Scale (K-TIS)

  • Jung, Hye-Rim;Choi, Young-Eun
    • 대한물리의학회지
    • /
    • 제14권4호
    • /
    • pp.37-44
    • /
    • 2019
  • PURPOSE: The purpose of this study was to compare sitting balance and coordination spastic cerebral palsy in children using the Korean version of Trunk Impairment Scale (K-TIS) as well as to provide basic data about effective postural control treatment for clinicians handling these two types. METHODS: The K-TIS was measured in 29 children diagnosed with diplegic and quadriplegic cerebral palsy (18 with diplegia and 11 with quadriplegia). The average and standard scores of the children's K-TIS subscales and items of the two groups were measured. The two groups' subscales and items were analyzed by using the Mann-Whitney U test. RESULTS: Static sitting balance, dynamic sitting balance, coordination, and total score for children with diplegia were statistically high (p<.05). For all items under static sitting balance, the score for children with diplegia was higher. The first differences in the repeated items of dynamic sitting balance and coordination area that rotates between the upper and lower body were presented. CONCLUSION: The difference in balance and coordination in sitting positions is exhibited in children with diplegia and quadriplegia. For children with spastic quadriplegia, treatments should focus on static sitting balance and coordination, together with a focus on dynamic sitting balance and coordination.

An Interphalangeal Coordination-based Joint Motion Planning for Humanoid Fingers: Experimental Verification

  • Kim, Byoung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.234-242
    • /
    • 2008
  • The purpose of this paper is to verify the practical effectiveness of an interphalangeal coordination-based joint motion planning method for humanoid finger operations. For the purpose, several experiments have been performed and comparative experimental results are shown. Through the experimental works, it is confirmed that according to the employed joint motion planning method, the joint configurations for a finger's trajectory can be planned stably or not, and consequently the actual joint torque command for controlling the finger can be made moderately or not. Finally, this paper analyzes that the interphalangeal coordination-based joint motion planning method is practically useful for implementing a stable finger manipulation. It is remarkably noted that the torque pattern by the method is well-balanced. Therefore, it is expected that the control performance of humanoid or prosthetic fingers can be enhanced by the method.

Effects of Differential Stability on Control of Multi-Joint Coordination in the Upper Extremity: A Torque Component Analysis

  • Ryu, Young Uk;Shin, Hwa Kyung
    • The Journal of Korean Physical Therapy
    • /
    • 제28권1호
    • /
    • pp.8-13
    • /
    • 2016
  • Purpose: The purpose of the present current study was to examine control of upper limb multi-joint movements with differential coordination stability. To achieve the goals of the study, torque analyses were utilized to answer questions about how torque components were differed among various elbow-wrist coordination patterns. Methods: Eight self-reported right-handed college students (3 males and 5 females, mean age=20.6 yr) were volunteered. The task required participants to rhythmically coordinate the flexion-extension motions of their elbow and wrist with coordination relationship of $0^{\circ}$, $90^{\circ}$, and $180^{\circ}$relative phases between the two joints. Mean relative phase and phase stability (standard deviation of relative phase) were computed to for analysisze of overall coordination performance. To determine the figure out characteristics of torque components in elbow and wrist joints, impulse values of muscle torque (MT) and interactive torque (IT) and MT as a percentage of cycle duration (MT-PCD) were analyzed. Results: Torque results showed that the proximal elbow joint generated motions with mainly muscle efforts regardless of coordination patterns, while the distal wrist joint adjusted the coordination patterns by changing amount of MT. Impulse analyses showed that the least stable $90^{\circ}$ pattern was performed by utilizing a similar coordination strategy of the most stable $0^{\circ}$ pattern. Conclusion: The present current study suggests that the roles of distal and proximal joints differ in order to achieve various multi-joint coordination movements. This study provides information for use in gives an idea to development of rehabilitation or training programs for to persons with an impaired upper limb motor ability.