• Title/Summary/Keyword: Cooperative multiagent system

Search Result 6, Processing Time 0.018 seconds

A Multiagent System for Microgrid Operation in the Grid-interconnected Mode

  • Kim, Hak-Man;Kinoshita, Tetsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.246-254
    • /
    • 2010
  • This paper presents a multiagent system for microgrid operation in the grid-interconnected mode. An energy market environment with generation competition is adopted for microgrid operation in order to guarantee autonomous participation and meet the requirements of participants in the microgrid. The modified Contract Net Protocol (CNP) is used as a protocol for interactions among agents. The multiagent system for microgrid operation based on the modified CNP and the energy market environment is designed and implemented. To verify the feasibility of the suggested multiagent system, experiments on three operation conditions are carried out.

An Automatic Cooperative coordination Model for the Multiagent System using Reinforcement Learning (강화학습을 이용한 멀티 에이전트 시스템의 자동 협력 조정 모델)

  • 정보윤;윤소정;오경환
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • Agent-based systems technology has generated lots of excitement in these years because of its promise as a new paradigm for conceptualizing. designing. and l implementing software systems Especially, there has been many researches for multi agent system because of the characteristics that it fits to the distributed and open Internet environments. In a multiagent system. agents must cooperate with each other through a Coordination procedure. when the conflicts between agents arise. where those are caused b by the point that each action acts for a purpose separately without coordination. But P previous researches for coordination methods in multi agent system have a deficiency that they can not solve correctly the cooperation problem between agents which have different goals in dynamic environment. In this paper. we solve the cooperation problem of multiagent that has multiple goals in a dynamic environment. with an automatic cooperative coordination model using I reinforcement learning. We will show the two pursuit problems that we extend a traditional problem in multi agent systems area for modeling the restriction in the multiple goals in a dynamic environment. and we have verified the validity of the proposed model with an experiment.

  • PDF

A Cooperative Multiagent System for Enhancing Smart Grid Performance

  • Mohammad A Obeidat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.164-172
    • /
    • 2023
  • Sharing power data between electrical power grids is crucial in energy management. The multi-agent approach has been applied in various applications to improve the development of complex systems by making them both independent and collaborative. The smart grid is one of the most intricate systems that requires a higher level of independence, reliability, protection, and adaptability to user requests. In this paper, a multi-agent system is utilized to share knowledge and tackle challenges in smart grids. The shared information is used to make decisions that aid in power distribution management within the grid and with other networks. The proposed multi-agent mechanism improves the reliability of the power system by providing the necessary information at critical times. The results indicate that the multi-agent system operates efficiently and promptly, making it a highly promising candidate for smart grid management.

A Method of Extending a Multiagent Framework with a Plan Generation Module (계획생성 모듈을 갖는 멀티에이전트 기반구조의 확장방법)

  • Lee, Gowang-Lo;Park, Sang-Kyu;Jang, Myong-Wuk;Min, Byung-Eui;Choi, Joong-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.9
    • /
    • pp.2280-2288
    • /
    • 1997
  • An agent is a software element that, by making use of knowledge and inference, performs tasks on behalf of the user. In general, an agent has the properties of autonomy, social ability, reactivity, and durability. Many researches on agents are more and more aiming at the multiagent systems since it is not sufficient to let a single agent do the whole things, especially in a real world where tasks require many diverse activities. However, the multiagent frameworks still have some limitations in the processing of user queries that are often ambiguous and goal-oriented. Also, a series of procedures or plans could not be generated from a single query directly. In order to give more intelligence to the multiagent framework, we propose a method of extending the framework with a plan generation module. The open agent architecture (OAA), which is a multiagent framework that we developed, is integrated with UCPOP, which is a AI planner. A travel schedule management agent (TSMA) system is implemented to explore the effects of the method. The extended system enables the user to only specify goal-oriented queries, and the plans and procedures to satisfy these goals are generated automatically. Also, this system provides a cooperative and knowledge-sharing environment that integrates several knowledge-based systems and planning systems that are distributed and used independently.

  • PDF

Evoluationary Design of a Fuzzy Logic Controller For Multi-Agent Robotic Systems

  • Jeong, ll-Kwon1;Lee, Ju-Jang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.147-152
    • /
    • 1999
  • It is an interesting area in the field of artifical intelligence to find an analytic model of cooperative structure for multiagent system accomplishing a given task. Usually it is difficult to design controllers for multi-agent systems without a comprehensive knowledge about the system. One of the way to overcome this limitation is to implement an evolutionary approach to design the controllers. This paper introduces the use of a genetic algorithm to discover a fuzzy logic controller with rules that govern emergent agents solving a pursuit problem in a continuous world. Simulation results indicate that, given the complexity of the problem, an evolutionary approach to find the fuzzy logic controller seems to be promising.

  • PDF

C-COMA: A Continual Reinforcement Learning Model for Dynamic Multiagent Environments (C-COMA: 동적 다중 에이전트 환경을 위한 지속적인 강화 학습 모델)

  • Jung, Kyueyeol;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.143-152
    • /
    • 2021
  • It is very important to learn behavioral policies that allow multiple agents to work together organically for common goals in various real-world applications. In this multi-agent reinforcement learning (MARL) environment, most existing studies have adopted centralized training with decentralized execution (CTDE) methods as in effect standard frameworks. However, this multi-agent reinforcement learning method is difficult to effectively cope with in a dynamic environment in which new environmental changes that are not experienced during training time may constantly occur in real life situations. In order to effectively cope with this dynamic environment, this paper proposes a novel multi-agent reinforcement learning system, C-COMA. C-COMA is a continual learning model that assumes actual situations from the beginning and continuously learns the cooperative behavior policies of agents without dividing the training time and execution time of the agents separately. In this paper, we demonstrate the effectiveness and excellence of the proposed model C-COMA by implementing a dynamic mini-game based on Starcraft II, a representative real-time strategy game, and conducting various experiments using this environment.