• Title/Summary/Keyword: Cooperative Relays

Search Result 134, Processing Time 0.022 seconds

Energy Harvesting in Multi-relay Multiuser Networks based on Two-step Selection Scheme

  • Guo, Weidong;Tian, Houyuan;Wang, Qing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4180-4196
    • /
    • 2017
  • In this paper, we analyze average capacity of an amplify-and-forward (AF) cooperative communication system model in multi-relay multiuser networks. In contrast to conventional cooperative networks, relays in the considered network have no embedded energy supply. They need to rely on the energy harvested from the signals broadcasted by the source for their cooperative information transmission. Based on this structure, a two-step selection scheme is proposed considering both channel state information (CSI) and battery status of relays. Assuming each relay has infinite or finite energy storage for accumulating the energy, we use the infinite or finite Markov chain to capture the evolution of relay batteries and certain simplified assumptions to reduce computational complexity of the Markov chain analysis. The approximate closed-form expressions for the average capacity of the proposed scheme are derived. All theoretical results are validated by numerical simulations. The impacts of the system parameters, such as relay or user number, energy harvesting threshold and battery size, on the capacity performance are extensively investigated. Results show that although the performance of our scheme is inferior to the optimal joint selection scheme, it is still a practical scheme because its complexity is much lower than that of the optimal scheme.

Co-channel Interference Mitigation using Orthogonal Transmission Scheme for Cooperative Communication System with Decode-and-Forward Relays (복조후 전송 중계기를 이용한 협력통신 시스템에서 직교 전송 개념을 이용한 동일 채널 간섭 완화)

  • Kim, Eun-Cheol;Seo, Sung-Il;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • In this paper, we analyze and simulate co-channel interference (CCI) mitigation method for cooperative communication systems employing decode-and-forward relays. In co-channel interference mitigation method, A source transmits signals that are encoded by orthogonal code. Then, the receiver can distinguish its own signals form the received signals by using the orthogonal code which is already known to the receiver. The orthogonal codes applied to this paper are orthogonal Gold codes. However, we can employ other codes, which have orthogonality, as the orthogonal code. In addition, we utilize a space time block coding (STBC) scheme for enhancing the system performance by obtaining additional array gain.

High Capacity Relay Protocols for Wireless Networks

  • Fan, Yijia;Krikidis, Ioannis;Wang, Chao;Thompson, John S.;Poor, H. Vincent
    • Journal of Communications and Networks
    • /
    • v.11 no.2
    • /
    • pp.196-206
    • /
    • 2009
  • Over the last five years, relaying or multihop techniques have been intensively researched as means for potentially improving link performance of wireless networks. However, the data rates of relays are often limited because they cannot transmit and receive on the same frequency simultaneously. This limitation has come to the attention of researchers, and recently a number of relay techniques have been proposed specifically to improve the data efficiency of relaying protocols. This paper surveys transmission protocols that employ first single relays, then multiple relays and finally multiple antenna relays. A common feature of these techniques is that novel signal processing techniques are required in the relay network to support increased data rates. This paper presents results and discussion that highlight the advantages of these approaches.

The Performance of Multistage Cooperation in Relay Networks

  • Vardhe, Kanchan;Reynolds, Daryl
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.499-505
    • /
    • 2015
  • We analyze the performance of multistage cooperation in decode-and-forward relay networks where the transmission between source and destination takes place in $T{\geq}2$ equal duration and orthogonal time phases with the help of relays. The source transmits only in the first time phase. All relays that can decode the source's transmission forward the source's message to the destination in the second time phase, using a space-time code. During subsequent time phases, the relays that have successfully decoded the source message using information from all previous transmitting relays, transmit the space-time coded symbols for the source's message. The non-decoding relays keep accumulating information and transmit in the later stages when they are able to decode. This process continues for T cooperation phases. We develop and analyze the outage probability of multistage cooperation protocol under orthogonal relaying. Through analytical results, we obtain the near-optimal placement strategy for relays that gives the best performance when compared with most other candidate relay location strategies of interest. For different relay network topologies, we also investigate an interesting tradeoff between an increased SNR and decreased spectral efficiency as the number of cooperation stages is increased. It is also shown that the largest multistage cooperation gain is obtained in the low and moderate SNR regime.

Performance of DOT Relay System with MRC/GSC receiver in Rayleigh Fading Channels (레일레이 페이딩 채널에서 MRC/GSC 수신하는 DOT 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.5
    • /
    • pp.11-16
    • /
    • 2012
  • Opportunistic transmit cooperative relaying (OTR) system has been interested for its ability to mitigate the fading in wireless channel without multiple antennas in a small terminal. In OTR system, only the relays that the received Signal-to-noise ratio (SNR) from a source is greater than the threshold transmit to the destination. However, the receiving branches of a destination in a realistic system is fixed, the excess number of signals from the transmit relays does not improve the system performance and consequently increases power consumption. In this paper, we adopt Double Opportunistic Transmit (DOT) cooperative diversity system which controls the average number of transmit relays. Although the average number of the transmit relays can be controlled by adjusting the two thresholds in DOT system, the instantaneous number of transmit relays is varying in fading channel. Thus we propose Maximal Ratio Combining (MRC) or Generalized Selection Combining (GSC) according to the number of the signals from relays at the destination. The outage probability of the proposed system is derived in closed form. The analytical results show that the system performance is improved with the number of the branches. Also it is noticed that when the number of the branches is fixed, the outage probability decreases with the increase of the average SNR of S-R path and R-D path.

Cooperative Communication with Different Combining Techniques in One-Dimensional Random Networks

  • Duy, Tran Trung;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.1
    • /
    • pp.13-19
    • /
    • 2012
  • In this paper, we investigate cooperative transmission in one-dimensional random wireless networks. In this scheme, a stationary source communicates with a stationary destination with the help of N relays, which are randomly placed in a one-dimensional network. We derive exact and approximate expressions of the average outage probability over Rayleigh fading channels. Various Monte-Carlo simulations are presented to verify the accuracy of our analyses.

Cooperation Models and Cooperative Routing for Exploiting Hop-by-Hop Cooperative Diver sity in Ad Hoc Networks

  • Shin, Hee-Wook;Moh, Sang-Man;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1559-1571
    • /
    • 2011
  • In wireless ad hoc networks, nodes communicate with each other using multihop routed transmission in which hop-by-hop cooperative diversity can be effectively employed. This paper proposes (i) two cooperation models for per-link cooperation (PLC) and per-node cooperation (PNC) for exploiting cooperative diversity in wireless ad hoc networks and (ii) a cooperative routing algorithm for the above models in which best relays are selected for cooperative transmission. First, two cooperation models for PLC and PNC are introduced and represented as an edge-weighted graph with effective link quality. Then, the proposed models are transformed into a simplified graph and a cooperative routing algorithm with O(n2) time is developed, where n is the number of nodes in the network. The effectiveness of the algorithm is confirmed for the two cooperation models using simulation.

Joint optimization of beamforming and power allocation for DAJ-based untrusted relay networks

  • Yao, Rugui;Lu, Yanan;Mekkawy, Tamer;Xu, Fei;Zuo, Xiaoya
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.714-725
    • /
    • 2018
  • Destination-assisted jamming (DAJ) is usually used to protect confidential information against untrusted relays and eavesdroppers in wireless networks. In this paper, a DAJ-based untrusted relay network with multiple antennas installed is presented. To increase the secrecy, a joint optimization of beamforming and power allocation at the source and destination is studied. A matched-filter precoder is introduced to maximize the cooperative jamming signal by directing cooperative jamming signals toward untrusted relays. Then, based on generalized singular-value decomposition (GSVD), a novel transmitted precoder for confidential signals is devised to align the signal into the subspace corresponding to the confidential transmission channel. To decouple the precoder design and optimal power allocation, an iterative algorithm is proposed to jointly optimize the above parameters. Numerical results validate the effectiveness of the proposed scheme. Compared with other schemes, the proposed scheme shows significant improvement in terms of security performance.

A Full Rate Dual Relay Cooperative Approach for Wireless Systems

  • Hassan, Syed Ali;Li, Geoffrey Ye;Wang, Peter Shu Shaw;Green, Marilynn Wylie
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.442-448
    • /
    • 2010
  • Cooperative relaying methods have attracted a lot of interest in the past few years. A conventional cooperative relaying scheme has a source, a destination, and a single relay. This cooperative scheme can support one symbol transmission per time slot, and is caned full rate transmission. However, existing fun rate cooperative relay approaches provide asymmetrical gain for different transmitted symbols. In this paper, we propose a cooperative relaying scheme that is assisted with dual relays and provides full transmission rate with the same macro-diversity to each symbol. We also address equalization for the dual relay transmission system in addition to addressing the issues concerning the improvement of system performance in terms of optimal power allocations.

Relay Selection for Two-hop Cooperative Jamming Network with Multiple Eavesdroppers (다수의 중계기와 도청자가 존재하는 협력 재밍 네트워크를 위한 중계기 선택 기법)

  • Choi, Yongyun;Lee, Jae Hong
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.105-108
    • /
    • 2016
  • In this paper, a cooperative jamming network with multiple relays and multiple eavesdroppers is investigated. Among the relays, one best relay is selected to amplify and forward the signal to destination through two phases. To confuse eavesdroppers, the destination transmits a jamming signal in the first phase and the source transmits jamming signal in the second phase. Secrecy rate of this system is derived, and based on the available channel state information (CSI), relay selection schemes are proposed, respectively. Numerical results show that the performance of the proposed relay selection scheme outperforms than that of random relay selection scheme.