• 제목/요약/키워드: Cooling oil

검색결과 367건 처리시간 0.024초

고속주축의 냉각조건과 후반부 냉각 유무에 따른 열특성 연구 (A Study on the Thermal Characteristics of a High Speed Spindle according to the Cooling Existence of Rear Part and the Cooling Conditions)

  • 최대봉;김수태;이석준;김창용
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.50-55
    • /
    • 2012
  • The important problem in high speed spindle is to reduce and minimize the thermal effect by motor and bearing. This paper presents the thermal characteristic analysis for a high speed spindle with and without cooling at the rear part, considering the viscosity and the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil jacket cooling and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. This result can be applied to the design and manufacture of a high speed motor spindle.

변압기용 ONAF 방식 방열기의 팬 배치에 따른 냉각특성 연구 (Numerical Study of the Effect of Fan Arrangement on the Cooling Performance of the ONAF Type Radiator for Power Transformer)

  • 김국겸;서용권;강상모
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.449-455
    • /
    • 2015
  • 전력용 변압기 용량의 증대와 고효율화에 따른 권선의 단위체적당 열발생량의 증가 및 이에 따른 절연성능의 저하는 전력용 변압기의 수명과 신뢰성에 큰 영향을 준다. 이러한 문제점은 방열기의 냉각성능을 증가시킴으로써 해결이 가능하다. 본 연구는 ONAF(Oil Natural Air Forced) 형식의 변압기의 방열기에 대해 공기의 강제대류를 일으키는 팬의 위치에 따른 냉각성능 평가를 통하여 냉각효과가 가장 큰 팬의 위치를 찾기 위한 것이다. 해석에는 유동해석 상용소프트웨어를 사용하였으며, 해석시간의 단축을 위하여 오일의 냉각유로를 단순화시켰고 팬의 지름을 일정하게 두고 팬의 위치를 다양하게 변화시켜가며 해석을 실행하였다. 해석 결과 팬의 수직적인 위치 변화는 냉각성능에 크게 영향을 주지 않았으나 팬이 변압기의 전방영역에 위치할 경우 후방영역의 배치보다 온도강하가 큰 것을 확인할 수 있었다.

초정밀 유정압 테이블에서 냉각장치의 변수 설정이 온도특성에 미치는 영향 (Influence of Parameter Setting in an Oil Cooler on the Temperature Characteristics of an Ultra-precision Hydrostatic Table)

  • 김경호;김창주;오정석;박천홍
    • 한국정밀공학회지
    • /
    • 제32권6호
    • /
    • pp.571-576
    • /
    • 2015
  • Temperature characteristics of supply oil in an ultra-precision hydrostatic table are largely influenced by parameter setting in an oil cooler such as the location of reference sensor and cooling temperature. In this paper, influences of the parameter setting on the temperature variation in the hydrostatic table are experimentally analyzed to suggest the guidelines for practical application. In case of using temperature of inlet oil as a reference sensor in the oil cooler, temperature rise of the supply oil is smaller and thermal settling time is faster than that of using temperature of outlet oil as a reference sensor. The experimental results also show that temperatures of table, rail and return oil can be made almost same, and thermal settling time can be decreased by setting cooling temperature in the oil cooler to be lower than atmospheric temperature.

Renewable Low-viscosity Dielectrics Based on Vegetable Oil Methyl Esters

  • Yu, Hui;Yu, Ping;Luo, Yunbai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.820-829
    • /
    • 2017
  • Vegetable oil dielectrics have been used in transformers as green alternatives to mineral insulating oils for about twenty years, because of their advantages of non-toxic, biodegradability, and renewability. However, the viscosity of vegetable oils is more than 3 times of mineral oils, which means a poor heat dissipation capacity. To get low-viscosity dielectrics, transesterification and purification were performed to prepare vegetable oil methyl esters in this study. Electrical and physical properties were determined to investigate their potential as dielectrics. The results showed that the methyl ester products had good dielectric strengths, high water saturation and enough fire resistance. The viscosities (at $40^{\circ}C$) were 0.2 times less than FR3 fluid, and 0.7 times less than mineral oil, which indicated superior cooling capacity as we expected. With the assistance of 0.5 wt% pour point depressants, canola oil methyl ester exhibited the lowest pour point ($-26^{\circ}C$) among the products which was lower than FR3 fluid ($-21^{\circ}C$) and 25# mineral oil ($-23^{\circ}C$). Thus, canola oil methyl ester was the best candidate as a low-viscosity vegetable oil-based dielectric. The low-viscosity fluid could extend the service life of transformers by its better cooling capacity compared with nature ester dielectrics.

WC-Co/Cu/SM45C강접합에 미세조직 및 접합강도에 미치는 냉각속도의 영향 (Effects of cooling rate on Microstructure and Bond Strength in WC-Co/Cu/SM45C steel joint)

  • 정승부;양훈모
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.104-111
    • /
    • 1999
  • The interfacial microstructure and bond strength were examined for WC-Co/Cu/SM45C steel join using a nickel-plated copper in vacuum at 1323K for 0.6ks∼3.6ks. After bonding, microstructure in bonding interface was observed by OM(Optical Microscopy), SEM(Scanning Electron Microscopy) and EPMA(Eelectron Probe Micro Analyzer). The oil cooling was carried out at 353K, the cooling rate in air and furnace was 22K/s and 4.4K/s. respectively. It was found that dendritic widths increased with the content of cobalt and bonding times at 1323K. As a whole, bond strength values at the same bonding condition decreased in this order: WC-13wt.%Co/SM45Csteel. WC-8wt.%Co/SM45Csteel and WC-4wt.%Co/SM45Csteel. The bond strength of WC-13wt.%Co/S45C steel joint in oil cooling was 273MPa. This value was greatly higher than those of 125MPa in furnace cooling and 93MPa in air cooling at 1323K for 0.6ks. The bond strength values were found to be closely associated with the content of cobalt in WC-Co and cooling rate.

  • PDF

맥동압을 고려한 냉각팬 오일 기어모터의 진동해석 (Vibration Analysis for Oil Gear Motor considering Pulsation Pressure)

  • 신유인;이중섭;정웅기;서정세;송철기
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.793-798
    • /
    • 2012
  • Oil gear pump is used for the cooling pump system of commercial vehicle. The hydraulic pulsation pressure of oil gear pump is one of the most important reasons for the vibration and noise of the pump. In this study, the several hydraulic factors acting on oil gear motor are analyzed by CFD in operation of cooling system. Forced vibration analysis due to hydraulic pulsation pressure is analyzed by FEA for predicting deformation and equivalent stress.

냉각수 및 오일의 온도에 따른 연비향상에 관한 실험적 연구 (An Experimental Study on the Improvement of Fuel Economy according to Coolant and Oil Temperature)

  • 조원준;김형익;이기형
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.72-79
    • /
    • 2009
  • Recently, the internal combustion engines have focused on reducing the $CO_2$ gas in order to cope with severe regulations for fuel economy. Therefore, various new technologies have been developed. Among them, cooling system is spotlighted because it has great effect on fuel economy. In this study, we measured the friction losses of engine parts according to engine speed and oil temperature. We also obtained optimized oil temperature which has the minimum friction losses. Then, we selected optimized oil temperature range and gave informations of friction losses for each engine parts. In addition, we analyzed relationship between coolant temperature and oil temperature by using engine performance test system. From this experiment, we obtained the database for relationship between coolant temperature and oil temperature. Then, we found the optimal temperature about engine oil. We analyzed BSFC and exhaust emissions by controlling the high coolant temperture. If we controlled coolant temperature more higher, BSFC has a little difference but exhaust emissions such as THC and CO have reduced. By using these experimental results, we predicted that IC engine have more low fuel consumption and exhaust emissions by optimized cooling control strategy.

Engine Oil Jet System이 Engine Friction에 미치는 영향에 대한 연구 (Study of Engine Oil Jet System Effect on Engine Friction)

  • 민선기
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.687-692
    • /
    • 2016
  • 엔진에 터보차져를 사용하게 되면 엔진의 출력도 향상되지만 동시에 엔진의 온도도 높아지게 된다. 특히 피스톤의 경우는 냉각이 문제가 된다. 이러한 문제를 해결하기 위하여 오일 젯을 사용하는데, 오일 젯은 오일을 피스톤의 밑 부분에 분사하여 피스톤을 냉각시키는 것이다. 오일 젯이 사용된다면, 오일의 분사로 인하여 오일 유량의 증가및 피스톤으로부터의 열전달에 의하여 높아진 오일 온도 문제를 해결하기 위하여 오일 펌프 용량 증대와 오일 쿨러의 사용이 필요하다. 그러나 용량 증대 오일 펌프와 오일 쿨러를 사용하면 엔진의 마찰 토크가 증가하는 원인이 된다. 본 연구에서는 오일 젯, 오일 쿨러 및 오일 펌프의 용량 증대로 인하여 엔진의 마찰 토크가 증가하는 정도에 대하여 연구하였다. 또한 각 부품의 사양을 변경함에 따라 마찰 토크가 얼마나 영향을 받는가도 측정되었다. 저속에서는 오일 펌프와 오일 쿨러에 의한 영향이 크고 고속에서는 오일 쿨러에 의한 영향이 큼을 알 수 있었다.

Hot Gas를 이용한 오일쿨러의 성능평가 (Performances of Hot Gas Bypass Type Oil Cooler System)

  • 이승우;염한길;박길종
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.73-80
    • /
    • 2009
  • In accordance with the trend for high-speed multi-axes, and the increasing technical sophistication of machine tools, thermal deformation has become an important factor in the accuracy of machine tools. It was analyzed that thermal deformation error accounts for about 70% of all errors made with machine tools. For precise temperature control, both cooling and heating should be implemented. A hot gas bypass type cooling cycle method has a simplified structure and temperature control accuracy to with in ${\pm}0.1^{\circ}C$. In this study, the performances of oil cooler system, including temperature controllability according to hot gas floe and preset temperature sustainability according to temperature load, were tested. It is expected that this study will contribute to the development and performances of oil cooler system, which could minimize thermal errors and improve the quality of precision machine tools.

공기냉각 모터내장형 주축계의 열거동에 관한 연구 (Study on Thermal Behavior of Motor Integrated Spindle With Air Cooling System)

  • Lee, D.W.;Park, D.B.;Park, H.K.
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.86-91
    • /
    • 1995
  • Recently, motor integrated spindle is often used in a high speed spindle system of machine tools in order to increase machining speed. The important problem in high speed motor integrated spindle is to reduce thermal effect occured by motor and ball bearings. In this study, the effect of heat transfer from motor is investigated. The experimental equipment is composed with oil-air lubrication method, air cooling system and angular contact ball bearings. The results show that the thermal effect in motor is larger than in ball bearing until DmN 8000,000 with air cooling.

  • PDF