• Title/Summary/Keyword: Cooling modes

Search Result 92, Processing Time 0.027 seconds

Feasibility Study of the Decay Heat Removal Capability Using the Concept of a Thermosyphon in the Liquid Metal Reactor

  • Kim, Yeon-Sik;Sim, Yoon-Sub;Kim, Eui-Kwang
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.342-348
    • /
    • 2001
  • A new design concept for a decay heat removal system in a liquid metal reactor is proposed. The new design utilizes a thermosyphon to enhance the heat removal capacity and its heat transfer characteristics are analyzed against the current PSDRS (Passive Safety Decay heat Removal System) in the KAL IMER (Korea Advanced LIquid MEtal Reactor) design. The preliminary analysis results show that the new design with a thermosyphon yields substantial increase of 20∼40% in the decay heat removal capacity compared to the current design that do not have the thermosyphon. The new design reduces the temperature rise in the cooling air of the system and helps the surrounding structure in maintaining its mechanical integrity for long term operation at an accident. Also the analysis revealed the characteristics of the interactions among various heat transfer modes in the new design.

  • PDF

Spring Back in Amorphous Sheet Forming at High Temperature (아몰퍼스 고온 판재성형시 스프링백)

  • Lee Y-S
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

Critical Speed Analysis of a Vertical Pump (펌프회전체의 임계속도해석)

  • 전오성;김정태;임병덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1992
  • A critical speed analysis of a pump shaft has been investigated. Among various methods in the shaft critical speed calculation, a transfer matrix method has been examined in this research. After a brief review on the transfer matrix method, a modeling procedure for a continuous structure has been discussed. Then, a critical speed of a multistage pump shaft has been estimated up to several low modes. Throughout an analysis, parametric effects on the bearing stiffness, a degree of the modeling order, and attachmant of the impeller have been investigated. As an application example, a critical speed analysis of a verical pump which has been implemented in domestic electric power plants for cooling water circulation has been conducted in order to provide a safe operation as far as a pump vibration is concerned.

  • PDF

Vibration Characteristics of a New Optical Disk with Initial Stress (초기응력을 갖는 차세대 광디스크의 진동 특성)

  • Kim, Jae-Gwan;Lee, Seung-Yeop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2513-2519
    • /
    • 2000
  • Free vibration characteristics of an initially stressed CD/DVD disk, which is designed for increasing critical speeds of current optical disks, are analyzed using the Rayleigh-Ritz technique based on variational formulations. Natural frequencies of the new disk depend on membrane stresses caused by disk rotation as well as residual stresses imposed during the cooling process of the injection molding. Critical speeds are calculated for the various initial patterns of radial and circumferential stresses. Initially imposed tensile stresses increase the natural frequencies of all the vibration modes except zero nodal diameter mode, whose natural frequency is independent of circumferential stress. A new disk with initial tensile stress of 0.5MPa is shown to have its critical speed about 30 % higher than the current optical disk.

A Study on Flow and Heat Transfer in One Directional Periodic-Oscillating Cylinder (일방향 주기적 진동하는 원통 내의 유동 및 열전달 연구)

  • Park, Jun-Sang
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.5
    • /
    • pp.22-28
    • /
    • 2010
  • A study has been made of cool-down process on an incompressible fluid contained in a periodically oscillating cylinder when an abrupt cooling of wall temperature is imposed. Characteristics of flow and heat transfer are investigated along the variations of oscillating frequency and amplitude. One found the flow regimes are divided into 4-modes : 1 thermal island mode, 2 thermal island mode, 4 thermal island mode and asymmetry mode. Comprehensive analysis for each mode are given with a physical mechanism on cool-down process.

FUNCTIONAL MODELLING FOR FAULT DIAGNOSIS AND ITS APPLICATION FOR NPP

  • Lind, Morten;Zhang, Xinxin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.753-772
    • /
    • 2014
  • The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.

A Theoretical Study on a Folding Shading Device (접이식 차양장치에 관한 이론적 연구)

  • Baek, Sang-Hun;Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • The majority of fixed shading devices are installed in the exterior of a building in order to dissipate the heat absorbing from the sun and to prevent the direct sunlight. In designing external shading devices for windows, many requirements must be considered simultaneously; solar geometry, optimum energy performance, multi-purpose usage and design factors etc.. In order Lo satisfy these requirements, we suggests the folding shading device and its optimum design methodology. Also we analyzed the thermal performance using the IES_VE program according to various operating modes and compared with existing shading devices. The results show that proposed device reduce about $1.90{\sim}22.40%$ in cooling load and about $1.09{\sim}24.22%$ in heating load in comparison with existing ones.

Capacity Modulation of a Multi-Type Heat Pump System using PID Control with Fuzzy Logic (퍼지 로직 적용 PID 제어를 이용한 멀티형 열펌프의 용량조절)

  • 김세영;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.810-817
    • /
    • 2001
  • Performance of a water-to-water multi-type heat pump system using R22 which has tow indoor units has been investigated experimentally. The refrigerant flow rate of each indoor unit was regulated by an electronic expansion valve and the total refrigerant flow rate of the system was controlled by a variable speed compressor. In the system, evaporator outlet pressure of refrigerant and outlet temperatures of secondary fluid from indoor units were selected as control variables. Experiments were executed for both cooling and heating modes using PID control method with fuzzy logic, and results of the test are compared with a classical PID method. In the case of PID control with fuzzy logic, the fuzzy control rules corrects PID parameters each time. Results show that PID control with fuzzy logic has the merits of quick response and reduced overshoot.

  • PDF

A Human-Scaled Future for Dense Development

  • Harbour, Ivan
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.141-143
    • /
    • 2018
  • Critics of height argue that it de-humanizes our cities. Yet a critical mass is a necessity for vibrant city life, and height is a key contributor. If we can overcome the environmental impacts and technicalities of building tall and dense, our cities' streets can thrive and prosper. To make this happen, we must move towards working together to share resources, so we can ensure the continuity of the public realm. We already have the tools to do this; the challenge lies in the coordination of the public and private institutions that govern urban space. District heating and cooling systems; shared logistics spaces; care, responsibility and ownership of the public realm between buildings; seamless connectivity between modes of transport; creative combinations of shelter and seating, and the placement of buildings so that they are not overbearing to the streets around them - these attributes can be found in many places, though rarely all at once. This paper looks at the development of the city and offers Barangaroo South, Sydney, which addresses all these aspects, as a potential template for future city planning.

A study on the by-pass valve design of a scroll compressor with asymmetric wrap (비대칭 랩 스크롤 압축기의 바이패스 밸브 설계에 관한 연구)

  • 최진섭;곽상호;김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.181-189
    • /
    • 2000
  • The scroll compressor used for heat pump has a wide range of operation condition. To cover both heating and cooling modes, the operating Pressure ratio ranges from 1.5 to 6.8. Since the scroll compressor, however, is a type of compressor whose pressure ratio is fixed, some loss in the compression work is caused by the operation at the pressure ratio different from the built-in pressure ratio. A way of avoiding this problem is to introduce by-Pass holes in compression chambers, so that the compressed gas of pressure higher than the discharge pressure, yet not reached to the discharge port can be released earlier through the by-Pass holes. In this paper, an optimum Positioning of the by-Pass hole and the effect of the by-pass valve on the compressor performance are studied.

  • PDF