• 제목/요약/키워드: Cooling method

검색결과 2,233건 처리시간 0.026초

Simulation of wind process by spectral representation method and application to cooling tower shell

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Wind and Structures
    • /
    • 제2권2호
    • /
    • pp.105-117
    • /
    • 1999
  • The various spectral density functions of wind are applied in the wind process simulation by the spectral representation method. In view of the spectral density functions, the characteristics of the simulated processes are compared. The ensemble spectral density functions constructed from the simulated sample processes are revealed to have the similarity not only in global shape but also in the maximum values with the target spectral density functions with a high accuracy. For the correlation structure to be satisfied in the circumferential direction on the cooling tower shell, a new formula is suggested based on the mathematical expression representing the circumferential distribution of the wind pressure on the cooling tower shell. The simulated wind processes are applied in the dynamic analysis of cooling tower shell in the time domain and the fluctuating stochastic behavior of the cooling tower shell is investigated.

신경회로망을 이용한 냉방부하예측에 관한 연구 (The Study on Cooling Load Forecast using Neural Networks)

  • 신관우;이윤섭
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.626-633
    • /
    • 2002
  • The electric power load during the peak time in summer is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice-storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. And also the method of forecasting the cooling load using neural network is suggested. For the simulation, the cooling load is calculated using actual temperature and humidity, The forecast of the temperature, humidity and cooling load are simulated. As a result of the simulation, the forecasted data is approached to the actual data.

The Study on Cooling Load Forecast of an Unit Building using Neural Networks

  • Shin, Kwan-Woo;Lee, Youn-Seop
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제11권4호
    • /
    • pp.170-177
    • /
    • 2003
  • The electric power load during the summer peak time is strongly affected by cooling load, which decreases the preparation ratio of electricity and brings about the failure in the supply of electricity in the electric power system. The ice storage system and heat pump system etc. are used to settle this problem. In this study, the method of estimating temperature and humidity to forecast the cooling load of ice storage system is suggested. The method of forecasting the cooling load using neural network is also suggested. The daily cooling load is mainly dependent on actual temperature and humidity of the day. The simulation is started with forecasting the temperature and humidity of the following day from the past data. The cooling load is then simulated by using the forecasted temperature and humidity data obtained from the simulation. It was observed that the forecasted data were closely approached to the actual data.

Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화 (Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature)

  • 오창혁;김영신;전의식
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.

A comprehensive high Reynolds number effects simulation method for wind pressures on cooling tower models

  • Cheng, X.X.;Zhao, L.;Ge, Y.J.;Dong, J.;Demartino, C.
    • Wind and Structures
    • /
    • 제24권2호
    • /
    • pp.119-144
    • /
    • 2017
  • The traditional method for the simulation of high Reynolds number (Re) effects on wind loads on cooling tower models in wind tunnels focuses only on the mean wind pressure distribution. Based on observed effects of some key factors on static/dynamic flow characteristics around cooling towers, the study reported in this paper describes a comprehensive simulation method using both mean and fluctuating wind pressure distributions at high Re as simulation targets, which is indispensable for obtaining the complete full-scale wind effects in wind tunnels. After being presented in this paper using a case study, the proposed method is examined by comparing the full covariance matrices and the cross-spectral densities of the simulated cases with those of the full-scale case. Besides, the cooling tower's dynamic structural responses obtained using the simulated wind pressure fields are compared with those obtained by using the full-scale one. Through these works, the applicability and superiority of the proposed method is validated.

모터내장형 주축의 냉각특성에 관한 연구 (Study on the Cooling Effect of Motor Integrated Spindle)

  • 송영찬;이득우;최대봉;김수태
    • Tribology and Lubricants
    • /
    • 제13권1호
    • /
    • pp.8-13
    • /
    • 1997
  • Generally, A motor integrated spindle is selected to perform the high speed machining, to improve the machining flexibility, and to simplify the structure of machine tools. The thermal deformation caused by heat generation of the integrated motor is, however, serious problem in motor integrated spindle system. In this study, cooling characteristics for the several kinds of cooling systems(such as, oil-jacket cooling, air cooling) are investigated and more efficient cooling method is presented. The results show that the shaft cooling by the air cooling system is effective to improve the thermal characteristic of motor integrated spindle.

고온평판의 분무냉각특성에 관한 연구 (A Study on the Spray Cooling Characteristics of hot Flat Plates)

  • 윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.880-887
    • /
    • 1998
  • In order to study heat transfer characteristics of spray cooling for the purpose of uniform and soft cooling of high temperature surface a series of experiments for a hot horizontal copper flat plate was performed by downflow spray water using flat spray nozzle. Cooling curves were mea-sured under the various experimental conditions of flow rates and temperatures of cooling water Surface temperature surface heat fluxes and heat transfer coefficients of horizontal upward-facing flat surface were calculated with cooling curves measured at each radial positions near the cooling surface by TDMA method. Generally heat transfer characteristics for spray cooling is simi-lar to boiling phenomenon of pool boiling. The minimum heat flux(MHF) appear at the surface temperature of about ${\Delta}Tsat=250^{\circ}C$ and the critical heat flux(CHF) appear at about ${\Delta}Tsat=250^{\circ}C$.

  • PDF

나선형 냉각 자켓의 유량에 따른 냉각 특성 (A Study on the Cooling Characteristics of Helical Type Cooling-Jacket according to the Flow Rate)

  • 김태원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.231-235
    • /
    • 1999
  • Cooling characteristics of cooling jacket for spindle system with built-in motor are studied. for the analysis, three dimensional model for the cooling jacket is built by using finite volume method. The three dimensional model includes the estimation on the amount of heat generation of bearing and built-in motor and the thermal characteristic values such as heat transfer coefficients on the boundary. The temperature distributions and the cooling characteristics are analyzed by using the commercial software FLUENT. Numerical results show that stream-wise cross section area and flow rate are important factors for cooling characteristics of cooling jacket. Cooling performance of cooling jacket is good in condition that stream-wise cross section's horizontal length is close to its vertical one and flow rate is high. This results show that heat transfer is dominated by velocity profile and heat transfer area.

  • PDF

Temperature Control using Peltier Element by PWM Method

  • Pang, Du-Yeol;Jeon, Won-Suk;Choi, Kwang-Hoon;Kwon, Tae-Kyu;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1400-1404
    • /
    • 2005
  • This paper presents the temperature control of aluminum plate by using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is charged to Peltier element, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with current control and operating cooling fan only while cooling duration. Operating cooling fan only while cooling duration is proper to get more rapid heating and cooling duration. As a result of experiment, it takes about 100sec period to repeating temperature between $35^{\circ}C$ and $70^{\circ}C$ and about 80sec from $40^{\circ}C$ to $70^{\circ}C$ in ambient air temperature $25^{\circ}C$ and while operating cooling fan only in cooling duration. Future aim is to apply this temperature control method in actuating SMHA(special metal hydride actuator) which is applicable in Siver project acting in low frequency range by using Peltier element for heating and cooling.

  • PDF

매스콘크리트 시험체의 수화열 해석 및 실험 (Numerical Simulation of Temperature and Stress Distribution in Mass Concrete with pipe cooling and Comparision with Experimental Measurements)

  • 주영춘;김은겸;신치범;조규영;박용남
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.269-274
    • /
    • 1999
  • Various method have been developed for mass concrete structures to reduce the temperature increase of concrete mass due to exothermic hydration reactions of concrete compounds and thereby to avoid thermal cracks. One of the methods widely acceptable for practical use is pipe cooling, in which cooling is achieved by circulating cold water through thin-wall steel pipes embedded in the concrete. A numerical simulation was performed to investigate the effectiveness of pipe cooling. A three-dimensional finite element method was proposed to analyse the transient three-dimensional heat transfer between the hardening concrete and the cooling water in pipe and to predict the stress development during the curing process. The effects of the cement type and content and the environment were taken into consideration by the heat generation rate and the boundary conditions, respectively. In order to test the validity of the numerical simulation, a model RC structure with pipe cooling was constructed and the time-dependent temperature and stress distributions within the structure as well as the variation of the temperature of cooling water along the pipe were measured. The results of the simulation agreed well the experimental measurements. The results of this study have important implications for the optimal design of the cooling pipe layout and for the estimation of thermal stress in order to eliminate thermal cracks.

  • PDF