• Title/Summary/Keyword: Cooling load prediction

Search Result 52, Processing Time 0.024 seconds

A Prediction of the Indoor Contaminant diffusion using Network Simulation (시뮬레이션을 통한 실내 오염물질 확산의 예측 방법)

  • Kang, Ki-Nam;Song, Doo-Sam
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.311-318
    • /
    • 2006
  • CFD simulation is a tool very useful to predict the generation and absorption of the contaminant from the construction materials for the single room condition. However, there is a limit in multi-room simulation for analyzing air movement and contaminant concentration at the condition that the door of each room was closed. A lot of network simulation tool were developed which can used to analyze the mass transfer and contaminant concentration as results in the multi-room condition. However, existing network simulation method was not able to analyze the change of the heating and cooling load with the ventilation as though the change of the indoor air-pollution density was predictable. In this study, new approach to predict heating/cooling load and indoor contaminant concentration will be reviewed. New indoor contaminant concentration module reviewed in this study wad coupled with existing ESP-r network simulation method. The validity of new approach will be analysed for comparison the results of simulation and field measurement results.

  • PDF

Prediction of the Amount of Energy Consumption by Variation in Envelope Insulation on a Detached House in Southern Part of Korea (남부지역 주거건물의 외피단열변화에 따른 에너지소비량 예측)

  • Moon, Jin-Woo;Han, Seung-Hoon;Oh, Sai-Gyu
    • Journal of the Korean housing association
    • /
    • v.22 no.1
    • /
    • pp.115-122
    • /
    • 2011
  • This study aimed at quantifying the impact of envelope insulation on energy consumption for thermal controls in residential buildings in southern part of Korea. A series of parametric simulations for a range of R-values of walls, roof, floor, and windows were computationally conducted for a prototypical Korean detached house. Analysis revealed that the total amount of heat gain was larger than that of heat loss, while the amount of energy for cooling was smaller than that for heating due to the difference of system efficiency; the envelope heat transfer was more significant for the heat loss, thus, the increase of the envelope insulation was more effective to reduce heating load; and there were certain levels of envelope insulation after which the energy saving effect was not significant. These findings are expected to be a fundamental database for the decision of proper insulation level in Korean residential buildings.

Prediction of Dimensions of Cold Forgings Considering Springback of Material and Elastic Deformation of Die (소재의 탄성회복과 금형의 탄성변형을 고려한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J.M.;Lee M. C.;Park R. H.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.423-431
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

Finite Element Approach to Prediction of Dimensions of Cold Forgings (유한요소법을 이용한 냉간단조품의 치수 예측)

  • Jun B. Y.;Kang S. M.;Park J. M.;Lee M. C.;Park R. H.;Joun M. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.192-198
    • /
    • 2005
  • In this paper, a systematic attempt for estimating geometric dimensions of cold forgings is made by finite element method and a practical approach is presented. In the approach, the forging process is simulated by a rigid-plastic finite element method under the assumption that the die is rigid. With the information obtained from the forging simulation, die structural analysis and springback analysis of the material are carried out. In the springback analysis, both mechanical load and thermal load are considered. The mechanical load Is applied by unloading the forming load elastically and the thermal load is by cooling the increased temperature due to the plastic work to the room temperature. All the results are added to predict the final dimensions of the cold forged product. The predicted dimensions are compared with the experiments. The comparison has revealed that predicted results are acceptable in the application sense.

  • PDF

A Methodology of Databased Energy Demand Prediction Using Artificial Neural Networks for a Urban Community (인공신경망을 이용한 데이터베이스 기반의 광역단지 에너지 수요예측 기법 개발)

  • Kong, Dong-Seok;Kwak, Young-Hun;Lee, Byung-Jeong;Huh, Jung-Ho
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.184-189
    • /
    • 2009
  • In order to improve the operation of energy systems, it is necessary for the urban communities to have reliable optimization routines, both computerized and manual, implemented in their organizations. However, before a production plan for the energy system units can be constructed, a prediction of the energy systems first needs to be determined. So, several methodologies have been proposed for energy demand prediction, but due to uncertainties in urban community, many of them will fail in practice. The main topic of this paper has been the development of a method for energy demand prediction at urban community. Energy demand prediction is important input parameters to plan for the energy planing. This paper presents a energy demand prediction method which estimates heat and electricity for various building categories. The method has been based on artificial neural networks(ANN). The advantage of ANN with respect to the other method is their ability of modeling a multivariable problem given by the complex relationships between the variables. Also, the ANN can extract the relationships among these variables by means of learning with training data. In this paper, the ANN have been applied in oder to correlate weather conditions, calendar data, schedules, etc. Space heating, cooling, hot water and HVAC electricity can be predicted using this method. This method can produce 10% of errors hourly load profile from individual building to urban community.

  • PDF

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Numerical Analysis on Residual Stress relaxation by mechanical loading (기계적인 하중에 의한 용접부 잔류응력에 이완에 관한 해석)

  • Seo Jung-Won;Goo Byeung-Choon;Lee Dong-Hyeong;Chung Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.872-877
    • /
    • 2004
  • Welding residual stresses are the main topics of welding research fields. The residual stresses and distortion of structures by welding exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process are caused by tensile and compressive residual stresses in welding material, and this residual stresses can induce fracture and fatigue problems of welding structures. The accurate prediction of residual stress and relaxation due to mechanical loading of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the relaxation of residual stresses due to mechanical loading. The effects of load ratio for static and cyclic loading are evaluated based on analytical results.

  • PDF

The Improvement of the Performance of Solar Cooling and Heating Systems (III) - Development of One Dimensional Analytic Model for the Evaluation of Stratification Coefficients - (태양열에 의한 냉방 및 난방시스템의 성능향상 (III) - 성층화계수의 예측을 위한 1차원 해석모델의 개발 -)

  • Yoo, J.K.;Ro, S.T.;Lee, J.S.;Chung, S.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1989
  • A one dimensional analytic model for the prediction of the stratification coefficient of a liquid-based solar heating system is developed. The stratification coefficient, $K_s$, is defined as the ratio of the actual useful energy gain to the energy gain that would be achieved if there were no thermal stratification in the storage tank. Previous studies incorporated only collector-side effects, but in this study both the collector and load-side effects are included for the overall performance evaluation.

  • PDF

Thermal Design of IGBT Module with Respect to Stability (IGBT소자의 열적 안정성을 고려한 방열설계)

  • Lee Joon-Yeob;Song Seok-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.205-208
    • /
    • 2002
  • Thermal design is required with considering thermal stability to verify the reliability of electric power device with using IGBT. Numerical analysis is performed to analyzed the change in thermal resistance with respect to the various thermal density of heating element. Correlations between thermal resistance and heat generation density are established. With using these correlations, performance curve is composed with respect to the change in thermal resistance of cooling conditions for natural convection and forced convection. Thermal fatigue is occurred at the Inside and outside of IGBT by repeated heat load. The crack is occurred between base plate and ceramic substrate for the inside. When the crack length is 4mm, the failure is occurred. Therefore, Thermal design method considering thermal density, thermal fatigue resistance is presented on this study and it is expected to thermal design with considering life prediction.

  • PDF

Estimation on Heating and Cooling Loads for a Multi-Span Greenhouse and Performance Analysis of PV System using Building Energy Simulation (BES를 이용한 연동형 온실의 냉·난방 부하 산정 및 PV 시스템 발전 성능 분석)

  • Lee, Minhyung;Lee, In-Bok;Ha, Tae-Hwan;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Park, Gwanyong;Kim, Jun-Gyu
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.258-267
    • /
    • 2017
  • The price competitiveness of photovoltaic system (PV system) has risen recently due to the growth of industries, however, it is rarely applied to the greenhouse compared to other renewable energy. In order to evaluate the application of PV system in the greenhouse, power generation and optimal installation area of PV panels should be analyzed. For this purpose, the prediction of the heating and cooling loads of the greenhouse is necessary at first. Therefore, periodic and maximum energy loads of a multi-span greenhouse were estimated using Building Energy Simulation(BES) and optimal installation area of PV panels was derived in this study. 5 parameter equivalent circuit model was applied to analyzed power generation of PV system under different installation angle and the optimal installation condition of the PV system was derived. As a result of the energy simulation, the average cooling load and heating load of the greenhouse were 627,516MJ and 1,652,050MJ respectively when the ventilation rate was $60AE{\cdot}hr^{-1}$. The highest electric power production of the PV system was generated when the installation angle was set to $30^{\circ}$. Also, adjustable PV system produced about 6% more electric power than the fixed PV system. Optimal installation area of the PV panels was derived with consideration of the estimated energy loads. As a result, optimal installation area of PV panels for fixed PV system and adjustable PV system were $521m^2$ and $494m^2$ respectively.