• Title/Summary/Keyword: Cooling heating energy consumption

Search Result 276, Processing Time 0.024 seconds

Analysis of Environment Factors in Pleurotus eryngii Cultivation House of Permanent Frame Type Structure (영구형 큰느타리버섯 재배사의 환경요인 분석)

  • Yoon Yong-Cheol;Suh Won-Myung;Lee In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.125-137
    • /
    • 2006
  • Pleurotus eryngii is one of the most promising mushrooms produced on the domestic farms. The quality as well as quantity of Eryngii is sensitively affected by micro climate factors such as temperature, relative humidity, $CO_2$ concentration, and light intensity. To safely produce high-quality Eryngii all the yew round, it is required that the environmental factors be carefully controlled by well designed structures equipped with various facilities and control systems. At the commercial mushroom cultivation houses of permanent frame type (A, B), this study was carried out to find out reasonable range of each environmental factor and yield together with economic and safe structures influencing on the optimal productivity of Eryngii. This experiment was conducted for about two-year ken Nov. 2003 to Dec. 2005 in cultivation house. Ambient temperature during the experiment period was not predominantly different from that of a normal year. The capacity of the hot water boiler and the piping systems were not enough. Because the capacity of electric heater and air circulation were not enough, air temperatures in cultivation house before improvement of system were maintained somewhat lower than setting temperature, and maximum air temperature difference between the upper and lower growth stage during a heating time period was about 5.1. But the air temperatures after system improvement were maintained within the limits range of setting temperature without happening stagnant of air. Air temperature distribution was generally distributed uniform. Relative humidity in cultivation house before , improvement was widely ranged about $44{\sim}100%$. But as the relative humidity after improvement was ranged approximately $80{\sim}100%$, it was maintained within the range of relative humidity recommended. And $CO_2$ concentration was maintained about $400{\sim}3,300mg{\cdot}L^{-1}$ range. The illuminance in cultivation house was widely distributed in accordance with position, and it was maintained lower than the recommended illuminance range $100{\sim}200lx$. The acidity of midium was some lower range than the recommend acidity range of pH $5.5{\sim}6.5$. The yield was relatively ununiform. In case of bottle capacity of 1,300cc, the mushroom of the lowest grade was less than 3%. The consumption electric energy was quite different according to the cultivation season. The electric energy consumed during heating season was much more than that of cooling season.

Studies on the Production of Artificial Zeolite from Coal Fly Ash and Its Utilization in Agro-Environment

  • Lee, Deog-Bae;Henmi, Teruo;Lee, Kyung-Bo;Kim, Jae-Duk
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.401-418
    • /
    • 2000
  • 1. Production of the artificial zeolite from coal ash Coal fly ash is mainly composed of several oxides including $SiO_2$ and $Al_2O_3$ derived from inorganic compounds remained after burning. As minor components, $Fe_2O_3$ and oxides of Mg, Ca, P, Ti (trace) are also contained in the ash. These components are presented as glass form resulting from fusion in the process of the combustion of coal. In other word, coal ash may refer to a kind of aluminosilicate glass that is known to easily change to zeolite-like materials by hydrothermal reaction. Lots of hot seawater is disposing near thermal power plants after cooling turbine generator periodically. Using seawater in the hydrothermal reaction caused to produce low price artificial zeolite by reduction of sodium hydroxide consumption, heating energy and water cost. As coal ash were reacted hydrothermally, peaks of quartz and mullite in the ash were weakened and disappeared, and new Na-Pl peaks were appeared strengthily. Si-O-Si bonding of the bituminous coal ash was changed to Si-O-Al (and $Fe^{3+}$) bonding by the reaction. Therefore the produced Na-Pl type zeolite had high CEC of 276.7 $cmol^+{\cdot}kg^{-1}$ and well developed molecular sieve structure with low concentration of heavy metals. 2. Utilization of the artificial zeolite in agro-environment The artificial zeolite(1g) could remove 123.5 mg of zinc, 164.7 mg copper, 184.4 mg cadmium and 350.6 mg lead in the synthetic wastewater. The removability is higher 2.8 times in zinc, 3.3 times in copper, 4.7 times in cadmium and 4.8 times in lead than natural zeolite and charcoal powder. When the heavy metals were treated at the ratio of 150 $kg{\cdot}ha^{-1}$ to the rice plant, various growth inhibition were observed; brownish discoloration and death of leaf sheath, growth inhibition in culm length, number of panicles and grains, grain ripening and rice yield. But these growth inhibition was greatly alleviated by the application of artificial zeolite, therefore, rice yield increased $1.1{\sim}3.2$ times according to the metal kind. In addition, the concentration of heavy metals in the brown rice also lowered by $27{\sim}75%$. Artificial Granular Zeolites (AGZ) was developed for the purification of wastewater. Canon exchange capacity was 126.8 $cmol^+{\cdot}kg^{-1}$. AGZ had Na-Pl peaks mainly with some minor $C_3S$ peaks in X-ray diffractogram. In addition, AGZs had various pore structure that may be adhere the suspended solid and offer microbiological niche to decompose organic pollutants. AGZ could remove ammonium, orthophosphate and heavy metals simultaneously. Mixing ratio of artificial zeolite in AGZs was related positively with removal efficiency of $NH_4\;^+$ and negatively with that of $PO_4\;^{3-}$. Root growth of rice seedling was inhibited severely in the mine wastewater because of strong acidity and high concentration of heavy metals. As AGZ(1 kg) stayed in the wastewater(100L) for 4days, water quality turned into safely for agricultural usage and rice seedlings grew normally.

  • PDF

Development of Smart Switchgear for Versatile Ventilation Garments: Optimum Diameter and Voltage Application Unit Time of One-way Shape Memory Alloy Wire for a Bi-directional Actuator (가변 통기성 의복을 위한 스마트 개폐장치 개발: 양방향 작동 액추에이터 제작을 위한 일방향 형상기억합금 와이어의 최적 직경 및 전압인가 단위시간의 도출)

  • Kim, Sanggu;Kim, Minsung;Yoo, Shinjung
    • Science of Emotion and Sensibility
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2018
  • The study figured out the operational conditions of a two-way movement actuator made of one-way shape memory alloy (OWSMA) for versatile ventilation intelligent garments. To develop a low-power actuator that consumes energy only when a garment changes its form such as opening and closing, multiple channels of OWSMA were used, and optimum diameter of the wires was examined. For the switch device, optimum voltage application unit time was determined. Optimum diameter of OWSMA wire was determined by applying 3.7V to the pre-determined candidate diameters, which demonstrated two-way operation in previous studies. In order to evaluate the optimum voltage application time, the internal diameter of the actuator was measured while increasing and decreasing by 50 ms from the unit time of voltage application. Delay time under two-way operation of the actuator was measured to minimize interference caused by heat between channels. Power of 3.7V was applied to OWSMA for assessment of optimal time, and the whole process from heating to cooling was video-recorded with a thermal image camera to determine the point of time at which the temperature of OWSMA wire dropped below the phase transformation temperature. The results showed that $0.4{\Phi}$ was the most suitable diameter, and the optimum unit time of voltage applied to open and close the actuator was 4100ms. It was also shown that the delay time should be more than 1.8 seconds between two-way operations of the actuator.

A Study on the Performance of Foamed Concrete for Cores Material of Metal Vacuum Insulation Panel (금속진공단열패널의 심재용 기포콘크리트의 성능에 관한 연구)

  • Hong, Sang-Hun;Kim, Bong-Joo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.5
    • /
    • pp.417-423
    • /
    • 2020
  • In order to reduce cooling and heating, which is 40% of the energy consumption of buildings, it is important to improve the insulation of the skin. In order to improve the existing insulation, research is being conducted to apply a vacuum insulation panel(VIP) to buildings. However, VIP cannot be repaired, so we considered the metal vacuum insulation panel. Since the core of the metal vacuum pressure and have low thermal conductivity, foam concrete is adopted. However, preliminary experiments confirmed that the time to reach 0.001torr differs depending on the amount and nature of the bubbles. This effect is determined by the type of foaming agent and the density of the bubble slurry, the vacuum delivery time is determined to be the optimum foam concrete conditions are necessary. Therfore, this study aims to present basic data applicable to core materials by measuring vacuum delivery time and thermal conductivity change according to the foaming agent type and foam slurry density of foam large concrete which is core material of metal vacuum insulation panel. Experimental results and analysis show that compressive strength can be used regardless of the type of foam, In terms of thermal conductivity, it is stable to use vegetable foaming agents at 0.9g/㎤ or less. In terms of the vacuum delivery time, the foaming agent appeared similar regardless of the type of foaming agent, but it is considered suitable to use vegetable foaming agent based on compressive strength and thermal conductivity.

Prediction of Transpiration Rate of Lettuces (Lactuca sativa L.) in Plant Factory by Penman-Monteith Model (Penman-Monteith 모델에 의한 식물공장 내 상추(Lactuca sativa L.)의 증산량 예측)

  • Lee, June Woo;Eom, Jung Nam;Kang, Woo Hyun;Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.182-187
    • /
    • 2013
  • In closed plant production system like plant factory, changes in environmental factors should be identified for conducting efficient environmental control as well as predicting energy consumption. Since high relative humidity (RH) is essential for crop production in the plant factory, transpiration is closely related with RH and should be quantified. In this study, four varieties of lettuces (Lactuca sativa L.) were grown in a plant factory, and the leaf areas and transpiration rates of the plants according to DAT (day after transplanting) were measured. The coefficients of the simplified Penman-Monteith equation were calibrated in order to calculate the transpiration rate in the plant factory and the total amount of transpiration during cultivation period was predicted by simulation. The following model was used: $E_d=a*(1-e^{-k*LAI})*RAD_{in}+b*LAI*VPD_d$ (at daytime) and $E_n=b*LAI*VPD_n$ (at nighttime) for estimating transpiration of the lettuce in the plant factory. Leaf area and transpiration rate increased with DAT as exponential growth. Proportional relationship was obtained between leaf area and transpiration rate. Total amounts of transpiration of lettuces grown in plant factory could be obtained by the models with high $r^2$ values. The results indicated the simplified Penman-Monteith equation could be used to predict water requirements as well as heating and cooling loads required in plant factory system.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.