• Title/Summary/Keyword: Cooling frame

Search Result 71, Processing Time 0.03 seconds

Study on the Fire Behavior of Spring Bed Mattress with and Without a Cooling Frame (냉각프레임 설치 유무에 따른 스프링 침대 매트리스의 화재성상에 관한 연구)

  • Seo, Bo-Youl;Park, Kye-Won;Hong, Won-Hwa
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.24-29
    • /
    • 2018
  • To improve the fire safety of spring bed mattress, a cooling frame including cooling material (water) was made and a cooling frame was installed under the bed mattress or between the bed mattress and bed mattress base; fire tests (real scale) were conducted with or without a cooling frame. Similar fire behavior was observed at the beginning of the test (approximately 3 minutes). Subsequently, rapid fire growth in the mattress without a cooling frame, but with a cooling frame, the decline progressed without growth. The flame spread on the top surface of the bed mattress was similar in the semicircular direction, and the average flame speed velocity was analyzed at approximately 0.005 m/s. The maximum flame height was found to be approximately 2.7 m without a cooling frame, and approximately 1.8 m with a cooling frame installed. In addition, the maximum heat release rate was measured to be approximately 740 kW without a cooling frame, and approximately 400 kW with a cooling frame installed. As a result, the flame height and heat release rate were reduced when the bed mattress was fired through the installed cooling frame.

Heating and Cooling Energy Demand Evaluating of Standard Houses According to Layer Component of Masonry, Concrete and Wood Frame Using PHPP (PHPP를 활용한 조적, 콘크리트, 목조 레이어 구성별 표준주택 냉·난방 에너지 요구량 평가)

  • Kang, Yujin;Lee, Junhee;Lee, Hwayoung;Kim, Sumin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • A lot of the energy are consumed on heating and cooling in buildings. The buildings need to minimize the heating and cooling loads for $CO_2$ emissions and energy consumption reduction. In recently, also demand of detached houses were increase while the residential culture was changed. The structure of the domestic detached houses can be divided into masonry, concrete, wood frame houses. Therefore, in this study, the heating and cooling load and energy demand were analyzed on the equal area detached house consisting of three structural methods (Masonry, Concrete, Wood frame). Layer of wall, roof, and floor were composited by structure. Thermal transmittance (U-value) of each layer was using the PHPP calculation for considering stud, such as the wood frame wall. In addition, the case of without considering for studs in wood frame wall (Non-studs) was analyzed in order to compare the difference between studs or not. Analysis was performed using self-developed heating and cooling load calculation program (CHLC) based excel and ECO2. The results of cooling and heating load and energy demand showed the highest values in the wood frame structure, and the concrete structure were confirmed to maintain a high value secondly. Two structure were determined to be disadvantageous on the energy consumption. Consequently, the masonry structure have an advantage over the other structure under the identical conditions. It was determined that if the except for thermal bridges due to the studs in the wood frame structure, it can be reduced the energy consumption.

Analysis of Gas Cooling System for IR Window (적외선 윈도우용 가스식 냉각장치 해석 기법)

  • Hyun, Cheol-Bong;Goo, Nam-Seo;Kim, Jae-Young;Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.130-137
    • /
    • 2012
  • In this paper, a post-analysis of cooling system for infrared(IR) window was performed based on heating experiment of IR window system. We applied the same experimental conditions to analysis, and then validated the analysis technique by comparing numerical and experimental results. For an analysis software, we used a professional heat/fluid analysis program and the numerical and experimental results were in fairly good agreement. We investigated the effect of thermal transfer between the frame and IR window and also a cooling efficiency between fluid and structure in order to determine the proper parameters for the analysis. In this study, 100 % thermal transfer between the frame and IR window and 30 % cooling efficiency between fluid and structure have been proposed, which can be used in the future conceptual design and analysis of similar IR windows.

Evaporation Cooling Phenomena of Droplets Containing Fire Suppression Agents (화제 억제제가 첨가된 수용액 액적의 증발냉각 현상)

  • 유갑종;방창훈;김현우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.895-903
    • /
    • 2001
  • Evaporation cooling phenomena of droplets containing fire suppression agents on a hot metal surface were experimentally investigated. Solution of water containing potassium acetate (30-50% by weight) and sodium bromide (10-30% by weight) were used in the experiments, and surface temperatures were ranged from 70-116$^{\circ}C$. The evaporation time of the droplet on the heated surface was determined by using frame-by-frame analysis of the video records. It is found that the apparent evaporation time is shorter in turns of pure water, sodium bromide solution and potassium acetate solution. However, the time averaged heat flux is higher in turns of pure water, sodium bromide solution and potassium acetate solution. In-depth temperature variation of the hot metal does not occur significantly by the kinds of additive.

  • PDF

A Study on Relationship Insulation Thickness and Infiltration Load by Window (단열재 두께 변화와 창호 침기 부하와의 관계)

  • Choi, Jeong-Min;Cho, Sung-Woo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.422-427
    • /
    • 2012
  • This study investigates on the relationship between total load which is caused by infiltration and insulation thickness against compensation effect. As the result of experiment, the PVC(Synthetic resins sash) window frame in airtightness is superior to the AL(Aluminum sash) window frame. In this study, as the increasing of insulation thickness in reference building does not reduce significantly cooling load, the compensation effect due to airtightness against infiltration is very small. But the compensation effect against infiltration can be closely related with heating load. Therefore, the proper thermal insulation thickness can be needed respect to cooling and heating load.

Numerical Study on the Cooling of Induction Motor In a Washing Machine (세탁기용 유도모터의 냉각에 관한 수치적 연구)

  • Hong, Sang-Wook;Jeon, Si-Moon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.266-271
    • /
    • 2003
  • The numerical study was carried out to effectively cool Induction motor applied to a washing machine. The outer rotor made of steel periodically spins up and down. The stator consists of the thin layered iron plates and copper coil. The effective cooling system is necessary to solve the reliability problem caused by the electric losses at the coil and the iron plate. Because the heat transfer rate of the natural convection in partially open space is generally low, thus it is necessary to enhance the heat transfer using rotating perforated plate. The flow phenomena around the motor are very complex due to the motor geometry and the outer rotor motion. The mixed convection takes place due to the slow rotation speed. The three dimensional flow simulation was performed using rotating reference frame technique and Boussinesq approximation but the radiation effect was neglected. It was found that the angle and direction of the cooling blades play an important role in the stator temperature.

  • PDF

NUMERICAL STUDY FOR COOLING CAPACITY IMPROVEMENT OF ENGINE ROOM ENCLOSURE SYSTEM (엔진실 차폐 시스템의 냉각성능 개선을 위한 수치적 연구)

  • Bae, Y.S.;Yoo, G.J.;Choi, H.K.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • In engine room, proper enclosure system is preferable for reducing noise level but the enclosure system in the engine room causes bad influence on cooling performance due to poor ventilation. Cooling efficiency of the enclosure system can be improved by varying fan speed and proper flow path for ventilation. In this study, numerical analysis is performed to assess cooling effect of the enclosure system using finite volume method. The RNG k-$\varepsilon$ model is adopted for turbulence model along with heat exchanger model and porous media model for heat exchanger analysis, and moving reference frame model for rotational fan. Verification result shows reasonable agreement with experimental data. Analysis results show direct effect of velocity and temperature distribution on cooling ability in the enclosure system. Enclosure system of case B shows high heat transfer coefficient and has the smallest area ratio of opened flow passages which is good for noise level reduction.

AUTOMOBILE UNDERHOOD THERMAL AND AIR FLOW SIMULATION USING CFD (전산유체역학을 이용한 자동차 엔진룸의 열 및 유동장 해석)

  • Oh, K.T.;Kim, J.H.;Lee, S.W.;Kim, Y.S.;Ha, J.W.;Kang, W.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2007
  • Automobile underhood thermal and airflow simulation h α s been performed by using a commercial CFD program, FLUENT. To implement the radiation heat transfer effect to the underhood thermal and flow field, Discrete Ordinates Method(DOM) was used. The cooling fan was modeled by using the Multiple Reference Frame(MRF) technique. For the implementation of the heat exchangers, such as radiator and condenser, which are located in the front side of vehicle, the effectiveness-NTU model was used. The pressure drop throughout the heat exchangers was modeled as Porous media. For the validation of the current computational method, the coolant temperature at the inlet port of the radiator was compared with experimental data, and less than 3% error was observed. Finally, the composed model was used for the cooling fan spec determination process in the development of a new vehicle, and the results showed that the current CFD method could be successfully applied to the vehicle development process.

A Study on CFRTP Aircraft Frame Stiffening by OOA Process (OOA 공정을 통한 CFRTP 항공기 Frame 보강재 성형에 관한 연구)

  • Lee, Hwan-Ju;Jeon, Yong-Jun;Choi, Hyun-Seok;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.15-19
    • /
    • 2017
  • Carbon fiber reinforced plastic (CFRP) is applied as structural material. CFRP is excellent in plane strength / stiffness and don't haves rust. Lightweight, rigid and robust at the same time as transportation material. Aluminum alloy and reinforcement material The application is increasing rapidly. In this study, the prototype of a semi - Monocoque structure frame, Longeron, Stringer, Skin of the aircraft, restraining the rigidity Clips of the aircraft was designated as the target product and the experiment was conducted. ln the experiment, (1) For CFRTP 3 points, data on heating, transfer, and cooling were measured using Thermo Couple, and optimum temperature required for flexible state was obtained. Heating was performed at a temperature 15% higher than the provided temperature. (2) By using a pneumatic press during molding, by dividing LH, center and RH according to the cooling time, thickness parameter of the target product due to the load is measured, and thickness control and time-deviations were analyzed and cross sections were observed with a low magnification microscope.

Surface Profile Measuring System for Axial Fan of Cooling Towers (냉각탑용 축류팬 형상 정밀도 측정 시스템)

  • Kang Jae-Gwan;Lee Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.151-158
    • /
    • 2005
  • An important component of a cooling tower is an axial fan, and there happens distortion in its shape which brings significant loss of efficiency. In this paper, a surface profile measuring system for large size axial fan of cooling towers is developed. A laser sensor is used as a measuring device and aluminum profiles and stepping motors are engaged into the system as frame structure and driving devices respectively. The measuring data are compared to the design data to compute the distortion of the axial fans. Two types of errors, axial and twist errors, are used to represent the precision of axial fan distortion. Genetic algorithm is used to solve the optimization problem during computing the precision. Results are displayed three dimensionally in a solid-modeler as well as 2-D drawings to help users find it with ease.