• Title/Summary/Keyword: Cooling fin

Search Result 187, Processing Time 0.037 seconds

Heat Transfer and Fluid Flow Evaluation of Radiator for Computer Cooling (컴퓨터용 라디에이터의 열전달 및 유동특성 평가)

  • Cha, Dong-An;Kwon, Oh-Kyung;Yun, Jae-Ho;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1153-1158
    • /
    • 2009
  • The performance of louver-finned flat-tube and fin & tube radiators for computer CPU liquid cooling were experimentally investigated. In this study, 7 samples of radiators with different shape and pass number (1, 2, 10) were tested in a wind tunnel. The experiments were conducted under the different air velocity range from 1 to 4 m/s. The water flow rate through a pass was 1.2 LPM. Inlet temperatures of air and water were $20^{\circ}C$ and $30^{\circ}C$ respectively. It was found that the best performance was observed in the louver-finned flat-tube sample considering pressure drop and heat transfer coefficient.

  • PDF

Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage (가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성)

  • Choi, Seok Min;Kim, Su Won;Park, Hee Seung;Kim, Yong Jin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.43-55
    • /
    • 2020
  • The effect of cutted pin in front of pin-fin array was analyzed for increasing the cooling performance of gas turbine blade. The numerical simulations were conducted to figure out the flow and thermal characteristics. The base case which is staggered pin-fin array, cut pin case 1 which has X2/Dp=1.25 cut pin and cut pin case 2 which has X3/Dp=1.75 cut pin were compared. The results showed that cut pin increases the strength of the horseshoe vortex which occurred at the leading edge of pin-fin array. Furthermore, the wake effect is reduced at the trailing edge of pin-fin array. As a result, the heat transfer distribution on the endwall increases. However, the friction factor increases owing to the installation of cut pin, but the thermal performance factor is increased maximum 23.8% in cut pin case 2. Therefore, installation of cut pin will be helpful for increasing the cooling performance of pin-fin array of gas turbine blade.

Axisymmetric Thermal Analysis of 3D Regenerative Cooling System (3차원 재생 냉각 시스템의 축대칭 열해석)

  • Kim Sung-In;Park Seung-O
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2006
  • Axisymmetric numerical thermal analysis for a 3-dimensional regenerative cooling system in a rocket engine is carried out. To predict the accurate heat transfer with the stiff temperature distribution, several tests have been conducted for the grid size, the properties variation of the coolant and the combustion gas depending on temperature. The axisymmetric heat flux model is defined using fin efficiencies and is designed to be equivalent to the heat flux of the 3-dimensional coolant channel. For comparison purpose, the 1-dimensional analysis using Bartz equation is also conducted. The performance of the present model in predicting the cooling characteristics of a 3-dimensional regenerative cooling system is compared with the 3-dimensional results of RTE(Rocket Thermal Evaluation). It is found that the present method predicts much closer results to those of RTE code than 1-dimensional analysis.

Study on Performance Characteristics of Spiral Fin-Tube Evaporator Applied to Domestic Refrigerator-Freezers (나선형 핀-튜브 증발기를 적용한 냉장고의 성능 특성에 관한 연구)

  • Lee, Sang Hun;Yoon, Won Jae;Kim, Yongchan;Lee, Mooyeon;Yun, Seongjung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.205-212
    • /
    • 2013
  • The objective of this study was to investigate the feasibility of replacing a conventional plate fin-tube evaporator with a spiral fin-tube evaporator by comparing the performance of domestic refrigerator-freezers adopting either the plate fin-tube evaporator or spiral fin-tube evaporator. Experiments were conducted for the domestic refrigerator-freezers using either a 2-column and 15-row plate fin-tube evaporator or three spiral fin-tube evaporators with 11, 13, and 15 tube rows (N). The optimum refrigerant charge decreased with a decrease in the number of tube rows. The power consumptions of the domestic refrigerator-freezers using the spiral fin-tube evaporators with N = 11 and 13 were 2.8% and 1.5% lower than those using the plate fin-tube evaporator, respectively. In addition, the cooling capacity of the spiral fin-tube evaporator with N = 13 was 3%-7% higher than that of the plate fin-tube evaporator under the frosting condition. In a cooling speed test, all of the evaporators showed similar performances.

Eddy Current Testing for Radiator Tubes Surrounded by Cooling Fins

  • Nagata, Shoichiro;Tsubusa, Yoshiaki;Enokizono, Masato
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.276-280
    • /
    • 2011
  • This paper presents a non-destructive evaluation study on a radiator with cooling fins as a complex shaped specimen. Radiator structures are used in various heat exchangers, such as automobiles, air conditioners and refrigerators. An eddy current testing method, namely multi-frequency excitation and spectrogram method (MFES), was employed to detect a defect on the radiator tube surrounded by cooling fins. Overall, experimental results suggested that the influence of cooling fin is not as noticeable as that of the defect signals.

Study on copper end-tab shape for maximum heat discharging performance (방열 성능 향상을 위한 구리 엔드 탭의 최적형상 연구)

  • Choi, Yeou-Myeong;Choi, Yoon-Hwan;Cho, Sang-Myung;Park, Jung-Hyun;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • When implementing butt joint welding of two plates, it is useful to attach end-tabs made of a metal with high heat conductivity (e.g., copper) at the front and back sides of the welded plates to prevent the bead from rolling down and prevent defects that may occur at the tips of the weld zone. In this study, the fin shape, which is known to have good heat discharging characteristics by natural convection, has been applied to enhance the cooling performance of the end-tab. From both experiment and numerical analysis, it was confirmed that end-tabs with fin-shaped holes have better heat discharging performance than end-tabs without holes. Through thermal and fluid flow analysis, the cooling rates of end-tabs with different hole shapes were estimated in order to figure out characteristics of shape factor that are important for the heat discharging performance. As a result, we found that the structure including vertical fins with optimal fin gap was the best-performing shape.

A Study on the radiant Heat Characteristic According to Type and Array of LED Lighting Heatsink (LED 조명등 히트싱크 형상과 배열에 따른 방열특성에 관한 연구)

  • Jang, Hyun;Suh, Jeong Se;Yi, Chung Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.54-60
    • /
    • 2013
  • Numerical analysis of the radiant heat characteristic around heatsink according to arrangement and shape of fin on 60W-LED lamp is conducted in this study. In the case of top blow blowing from upper side on LED lamp, there is just little difference in cooling characteristics according to the height of fin. On the other hand, the fin arranged side by side has the advantage of heat transfer enhancement by comparing with zig-zag type because it leads to more loss of flow. In case of making fin round to increase the amount of heat transfer, designing arrangement with the minimized loss of flow has the advantage of characteristic.

Air Side Heat Transfer Charactieristics of Tension Wound Transverse Fin with Minichannel (장력 감김으로 부착된 가로방향 휜-미니채널의 공기측 열전달 특성)

  • Kim Jong-Soo;Im Yong-Bin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.701-706
    • /
    • 2005
  • Pipes, tubes. and tubular sections with external transverse high fins have been used extensively for heating cooling, and degumidifying air and other gases. This work was performed to investigate an air side heat transfer charactieristics of minichannel with tension wound transverse fin. This estimate was confirmed conversion heat capacity the air side surface area enlargement and heat transfer charactieristics performed available inlet tube side hot water mass flux or outlet tube side air frontal air velocity. The most suitable tension wound transverse finned minichannel was measured extremely low in air side pressure drop and fin effectiveness $3.3\~4.4$. The pressure drop $0.9\~2.8Pa$ was ranged frontal air velocity $0.5\~1.2m/s$. It is also appeared that heat transfer in air side could be better conversion heat area which has been increased $330\%$ of heat capacity compared with the bare tube.

Performance evaluation of PF-condenser adapted to Large Size air-conditioner (대형 에어컨에 적용된 PF열교환기의 성능평가)

  • Cho, J.P.;Choi, Y.H.;Kim, J.H.;Kim, N.H.;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.1-6
    • /
    • 2000
  • In this study, We evaluated the Performance of PFC and the system performance of large size air-conditioner applying to outdoor condenser. PFC can meet the same cooling capacity in 40.42% of volume to fin-tube condenser. Although the fin-tube condenser requires 3600g of refrigerant charging, PFC requires 1700g, 1800g, 1900g, 2000g refrigerant charging for each 2.0mm, 2.5mm, 3.0mm and 3.5mm fin pitches. Difference of condensing and evaporation pressure is the biggest point 2.0mm fin pitch and the smallest point 2.5mm fin pitch.

  • PDF

A Study on the Condensation Heat Transfer of Low Integral Fin Tubes (낮은 핀 관의 응축 열전달 성능에 관한 연구)

  • Han, Gyu-Il;Park, Seong-Guk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1996
  • The heat transfer performance of R - 11 vapor condensing on integral fin tubes has been studied using fin tubes having the fin density from 748 to 1654 fins per meter. Electric heater supplied heat energy to the boiler to generate R - 11 vapor over the range of 25-60W. Condensation rates of each tubes were tested under the condition of cooling water flow rate from 400l/h to 2500l/h. For the seven fin tubes tested, the best performance has been obtained with a tube having a fin density of 1417fpm and a fin height of 1.3mm. This tube has yielded a maximum value of the heat transfer coefficient of 16500W/$m_2$K, at a vapor to wall temperature difference of 3K. Experimental results of integral fin tubes have been compared with available predictive models such as Beatty - Katz's analysis, Webb's analysis, Sukhatme's analysis and Rudy's empirical relation. The experimental results were shown to be in good agreement with that of the Sukhatme's analysis.

  • PDF