• Title/Summary/Keyword: Cooling Technique

Search Result 491, Processing Time 0.034 seconds

Heat-up Calculation for the Auxiliary Feed Water Pump Room at Ulchin Units 3 and 4 for Loss of HVAC Accidents (HVAC 상실사고시 울진원전 3/4 호기의 보조급수펌프 격실 온동상승 평가)

  • Yoon, Churl;Park, Jin-Hee;Hwang, Mee-Jeong;Han, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.553-562
    • /
    • 2012
  • Computational Fluid Dynamics (CFD) analysis has been performed to estimate the air temperature inside an Auxiliary Feed Water (AFW) Motor-Driven (MD) pump room for the case where there is loss of Heating, Ventilation, and Air-Conditioning (HVAC). A transient calculation for the closed pump room without cooling by any HVAC system shows that the volume-averaged air temperature reaches around $60^{\circ}C$ for a transient period of 8.0 h. From previous studies, the external air and surface boundary temperatures are assumed to increase slowly starting from an initial temperature of $35^{\circ}C$. For the cases where the door is opened at 2, 4, and 6 h after the initiation of HVAC failure, the average air temperature promptly drops by about $4^{\circ}C$ when the door is opened and then slowly increases. The current calculations based on the CFD technique predict the rate of increase of air temperature to be lower than that determined by previous conservative calculations on the basis of a lumped model.

Three-dimensional Numerical Prediction on the Evolution of Nocturnal Thermal High (Tropical Night) in a Basin

  • Choi, Hyo;Kim, Jeong-Woo
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.25 no.1
    • /
    • pp.57-81
    • /
    • 1997
  • Numerical prediction of nocturnal thermal high in summer of the 1995 near Taegu city located in a basin has been carried out by a non-hydrostatic numerical model over complex terrain through one-way double nesting technique in the Z following coordinate system. Under the prevailing westerly winds, vertical turbulent fluxes of momentum and heat over mountains for daytime hours are quite strong with a large magnitude of more than $120W/\textrm{m}^2$, but a small one of $5W/\textrm{m}^2$ at the surface of the basin. Convective boundary layer (CBL) is developed with a thickness of about 600m over the ground in the lee side of Mt. Hyungje, and extends to the edge of inland at the interface of land sea in the east. Sensible heat flux near the surface of the top of the mountain is $50W/\textrm{m}^2$, but its flux in the basin is almost zero. Convergence of sensible heat flux occurs from the ground surface toward the atmosphere in the lower layer, causing the layer over the mountain to be warmed up, but no convergance of the flux over the basin results from the significant mixing of air within the CBL. As horizontal transport of sensible heat flux from the top of the mountain toward over the basin results in the continuous accumulation of heat with time, enhancing air temperature at the surface of the basin, especially Taegu city to be higher than $39.3^{\circ}C$. Since latent heat fluxes are $270W/\textrm{m}^2$ near the top of the mountain and $300W/\textrm{m}^2$ along the slope of the mountain and the basin, evaporation of water vapor from the surface of the basin is much higher than one from the mountain and then, horizontal transport of latent heat flux is from the basin toward the mountain, showing relative humidity of 65 to 75% over the mountain to be much greater than 50% to 55% in the basin. At night, sensible heat fluxes have negative values of $-120W/\textrm{m}^2$ along the slope near the top of the mountain and $-50W/\textrm{m}^2$ at the surface of the basin, which indicate gain of heat from the lower atmosphere. Nighttime radiative cooling produces a shallow nocturnal surface inversion layer with a thickness of about 100m, which is much lower than common surface inversion layer, and lifts extremely heated air masses for daytime hours, namely, a warm pool of $34^{\circ}C$ to be isolated over the ground surface in the basin. As heat transfer from the warm pool in the lower atmosphere toward the ground of the basin occurs, the air near the surface of the basin does not much cool down, resulting in the persistence of high temperature at night, called nocturnal thermal high or tropical night. High relative humidity of 75% is found at the surface of the basin under the moderate wind, while slightly low relative humidity of 60% is along the eastern slope of the high mountain, due to adiabatic heating by the srong downslope wind. Air temperature near the surface of the basin with high moisture in the evening does not get lower than that during the day and the high temperature produces nocturnal warming situation.

  • PDF

STSAT-3 Main Payload, MIRIS Flight Model Developments

  • Han, Won-Yong;Lee, Dae-Hee;Park, Young-Sik;Jeong, Woong-Seob;Ree, Chang-Hee;Moon, Bong-Kon;Park, Sung-Joon;Cha, Sang-Mok;Nam, Uk-Won;Park, Jang-Hyun;Lee, Duk-Hang;Ka, Nung-Hyun;Seon, Kwang-Il;Yang, Sun-Choel;Park, Jong-Oh;Rhee, Seung-Wu;Lee, Hyung-Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2010
  • The Main payload of the STSAT-3 (Korea Science & Technology Satellite-3), MIRIS (Multipurpose Infra-Red Imaging System) has been developed for last 3 years by KASI, and its Flight Model (FM) is now being developed as the final stage. All optical lenses and the opto-mechanical components of the FM have been completely fabricated with slight modifications that have been made to some components based on the Engineering Qualification Model (EQM) performances. The components of the telescope have been assembled and the test results show its optical performances are acceptable for required specifications in visual wavelength (@633 nm) at room temperature. The ensuing focal plane integration and focus test will be made soon using the vacuum chamber. The MIRIS mechanical structure of the EQM has been modified to develop FM according to the performance and environment test results. The filter-wheel module in the cryostat was newly designed with Finite Element Analysis (FEM) in order to compensate for the vibration stress in the launching conditions. Surface finishing of all components were also modified to implement the thermal model for the passive cooling technique. The FM electronics design has been completed for final fabrication process. Some minor modifications of the electronics boards were made based on EQM test performances. The ground calibration tests of MIRIS FM will be made with the science grade Teledyne PICNIC IR-array.

  • PDF

Study on tension-tension fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate (수중용접한 국산 SM41A-2강판의 편진반복 인장하중하의 피로강도특성에 관한 연구)

  • 오세규;박주성;한상덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 1987
  • Nowadays, the high development of industrial technique demands the optimal design of marine structures to be welded under the water, because the underwater welding of the ship hull and marine structures can decrease manpower and cost of production. However there is not available at present any report on fatigue behavior about underwater welded joints. In this paper under tention- tension repeated fatigue stress with frequency of 10 cycles per second by local controlled system, the fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate of 10 mm thickness were experimentally examined. The results obtained were as follows : 1) The fatigue strength of underwater welded joints of SM41A-2 was peaked at the heat input of about 1, 400 joule/mm(180 A, 36 V), while, at the heat input of more than about 1, 100 joule/mm (160 A, 33 V) that of the underwater welds at the higher than cycle of life rather than the lower cycle was higher than that of the base metal but lower than that of the atmosphere welds on account of both cooling and notch effects. 2) The fatigue limit of underwater welds increased with an increase of heat input resulting in a peak of that at the heat input of about 1, 400 joule/mm and then decreased gradually. 3) The fatigue strength at N cycles was peaked between the heat input of about 1, 400 and 1, 700 joule/mm where the strain was rapidly increased. 4) It was confirmed that the optimal zone of heat input condition for obtaining the underwater welds fatigue strength higher than that of the base metal exists, and if out of this zone, the fatigue strength of the underwater welds was lower than that of the base metal because of lack weld penetration, inclusion of slag, voids, etc. 5) By the fatigue test, the underwater welds fractured brittly without visual deformation, so the strain was remarkably less than of the atmosphere welds. 6) The fatigue life factor was peaked at the heat input of about 1, 600 joule/mm (200 A, 36 V) at which the mean strain is a little higher than that of the base metal but quite lower than those of the atmosphere welds, resulting in good underwater welds because both fatigue strength and ductility of the underwater welds are higher than those of the base metal at such heat input.

  • PDF

Experimental Study of Retrograde Cerebral Perfusion During Hypothermic Circulatory Arrest (초저체온 순환정지시 역행성 뇌혈 관류의 실험적 연구)

  • 김치경
    • Journal of Chest Surgery
    • /
    • v.26 no.7
    • /
    • pp.513-520
    • /
    • 1993
  • Surgical treatment of aneurysm or dissection involving the ascending aorta and aortic arch still poses one of the most complicated technical and tactical challenges in surgery. The use of total circulatory arrest[TCA] with profound hypothermia in the surgical treatment of aneurysmal dissection involving the ascending aorta and aortic arch has been reported as popular surgical methods. However, the safe period of prolonged circulatory arrest with hypothermia remains controversial and ischemic damage to the central nervous system and uncontrollable perioperative bleeding have been the major problem. We have found profound hypothermic circulatory arrest with retrograde cerebral perfusion via the superior vena cava to achieve cerebral protection. We experiment the aortic anastomosis in 7 adult mongrel dogs, using profound hypothermic circulatory arrest with continuous retrograde cerebral perfusion[RGCP] via superior vena cava. We also studied the extent of cerebral protection using above surgical methods, by gas analysis of retrograde cerebral perfusion blood and returned blood of aortic arch, preoperative, intraoperative and postoperative electroencephalography and microscopic findings of brain tissue. The results were as follows: 1. The cooling time ranged from 15 minutes to 24 minutes[19.71$\pm$ 3.20 minutes] ; Aorta cross clamp time ranged from 70 minutes to 89 minutes[79.86 $\pm$ 7.54 minutes] ; Rewarming time ranged from 35 minutes to 47 minutes[42.86$\pm$ 4.30 minutes] ; The extracorporeal circulation time ranged from 118 minutes to 140 minutes[128.43$\pm$ 8.98 minutes] [Table 2]. 2. The oxygen content in the oxygenated blood after RGCP was 12.66$\pm$ 1.25 ml/dl. At 5 minutes after the initiation of RGCP, the oxygen content of returnedlood was 7.58$\pm$ 0.21 ml/dl, and at 15 minutes 7.35$\pm$ 0.17 ml/dl, at 30 minutes 7.20$\pm$ 0.19 ml/dl, at 60 minutes 6.63$\pm$ 0.14 ml/dl [Table 3]. 3. Intraoperative electroencephalographic finding revealed low amplitude potential during hypothermia, and no electrical impulse throughout the period of circulatory arrest and RGCP. Electrical activity appeared after reperfusion, and the electroencephalographic reading also recovered rapidly as body temperature returned to normal [Fig. 2]. 4. The microscopic finding of brain tissue showed widening of the interfibrillar spaces. But there was no evidence of tissue necrosis or hemorrhage [Fig. 3]. We concluded the retrograde cerebral perfusion during hypothermic circulatory arrest is a simplified technique that may have a excellent brain protection.

  • PDF

Effect of Low Temperature-Darkness Treatment on Floral Initiation and Flowering Response of Korean Strawberry Cultivars (저온암흑처리가 국내 육성 신품종 딸기의 화아분화에 미치는 영향)

  • Jun, Ha Joon;Liu, Shi Sheng;Jeon, Eui Hwan;Bae, Geun Hye;Kang, Su In
    • Horticultural Science & Technology
    • /
    • v.31 no.6
    • /
    • pp.726-731
    • /
    • 2013
  • Experiments were conducted to evaluate the effect of low temperature-darkness treatment on floral initiation in four kinds of Korean strawberry cultivars. Mother plants were planted on March 29 and daughter plants were raised for the experiment. Temperature treatment was done for 7, 14, and 21 days keeping $13^{\circ}C$ in cooling storage from August 29, September 5 and September 14 to September 21. After the treatment, flower bud initiation was examined by a microscope, and the seedlings were transplanted on hydroponic system with Yamazaki's strawberry solution of EC $0.8dS{\cdot}m^{-1}$ to check the flowering. 'Ssanta' and 'Maehyang' showed early flower bud initiation in 7 days treatment than 'Seolhyang' by microscope check. 'Ssanta', 'Daewang', and 'Maehyang' showed early flower bud initiation in 14 days treatment than 'Seolhyang'. There were no differences among the treatments in 21 days treatment. Percentage of flowering of 'Seolhyang' and 'Maehyang' by low temperature-darkness treatment didn't show any difference but 'Daewang' and 'Ssanta' showed high percentage of flowering. It suggested that low temperature-darkness treatment technique can be use for improving early flowering and yield of 'Ssanta' and 'Daewang' cultivars.

Implementation of Low Frequency Welding Pre-heating System Using Induction Heating (유도가열 기법을 이용한 저주파 용접예열 시스템 구현)

  • Yang, Juyeong;Kim, Soochan;Park, Junmo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • Welding preheating means that the surface of the base material to which the metal is welded before the main welding is heated to a constant temperature. It prevents the cracks of the adjacent influences such as reduction of material hardening degree by controlling the cooling rate, suppression of segregation of impurities, prevention of thermal deformation, and moisture removal. For this reason, it is a necessary operation for high quality welding. Induction heating is an efficient heating method that converts electric energy into heat energy by applying electromagnetic induction phenomenon. Compared with combustion heat generated by gas and liquid, it is clean, stable, and economical as well as rapid heating. It can be heated regardless of the shape, depth and material of the heating body by modifying the shape of the frequency and the coil with a simple structure. In this paper, we implemented a low frequency welding preheating system using induction heating technique and observed the temperature changes of coil resistance, inductance and automotive transmission parts according to the height of each transmission in winding coil for three kinds of automotive transmission parts. We confirmed that the change of current is a very important factor in the low frequency heating.

A Study on the Thermo-Mechanical Fatigue Loading for Time Reduction in Fabricating an Artificial Cracked Specimen (열-기계적 피로하중을 받는 균열시편 제작시간 단축에 관한 연구)

  • Lee, Gyu-Beom;Choi, Joo-Ho;An, Dae-Hwan;Lee, Bo-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • In the nuclear power plant, early detection of fatigue crack by non-destructive test (NDT) equipment due to the thermal cyclic load is very important in terms of strict safety regulation. To this end, many efforts are exerted to the fabrication of artificial cracked specimen for practicing engineers in the NDT company. The crack of this kind, however, cannot be made by conventional machining, but should be made under thermal cyclic load that is close to the in-situ condition, which takes tremendous time due to the repetition. In this study, thermal loading condition is investigated to minimize the time for fabricating the cracked specimen using simulation technique which predicts the crack initiation and propagation behavior. Simulation and experiment are conducted under an initial assumed condition for validation purpose. A number of simulations are conducted next under a variety of heating and cooling conditions, from which the best solution to achieve minimum time for crack with wanted size is found. In the simulation, general purpose software ANSYS is used for the stress analysis, MATLAB is used to compute crack initiation life, and ZENCRACK, which is special purpose software for crack growth prediction, is used to compute crack propagation life. As a result of the study, the time for the crack to reach the size of 1mm is predicted from the 418 hours at the initial condition to the 319 hours at the optimum condition, which is about 24% reduction.

Experimental Performance Evaluation on V-shaped Butt Welding Using GMA Welding Double Wire Reel and Remote Control Torch Welding Technique (GMAW 더블 와이어 릴, 원격제어토치 용접기술을 이용한 V형 맞대기 용접 부의 실험적 성능 평가)

  • Kim, Jeong-Hyeok;Oh, Seck-Hyeog;Lee, Hae-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1339-1347
    • /
    • 2015
  • This study discusses a remote control torch system equipped with a GMAW double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel, such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is burned out completely. Such work suspension resulting from frequent moves to adjust the current and voltage as well as to replace the wire and subsequent cooling causes welding defects. This study produced a remote control torch equipped with a double wire reel by simplifying and streamlining the existing GMAW functions to reduce the troubling issue. The remote control torch equipped with a double wire reel and the existing $CO_2$ /MAG welding torch were applied as a V-groove butt in the vertical position using 6mm rolled steel for a SM50A welding structure. After welding, the condition of welded surface beads underwent a visual inspection and radiographic inspection to analyze the welding quality inside the welded part. This study also evaluated the reduction of welding defects, cost saving, the replacing performance against the existing commercial welders, and the effects on possible compatibility.

Liquid Phase Epitaxial Growth of GaAs on InP Substrates (액상에피택시 방법에 의한 InP기판상의 GaAs 이종접합 박막 성장)

  • Kim, Dong-Geun;Lee, Hyeong-Jong;Im, Gi-Yeong;Jang, Seong-Ju;Jang, Seong-Ju;Kim, Jong-Bin;Lee, Byeong-Taek
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.600-607
    • /
    • 1994
  • Optimum exper~mental conditions were established for the growth of heteroepitaxial GaAs layers on InP using liquid phase epitaxy (LPE) technique. Results showed that the optimum growth temperature was $720^{\circ}C$ at a cooling rate of $0.5^{\circ}C$/min. Surface morphology of the grown layers significantly improved by addition of about 0.005wt% Se to the Ga growth melt, which effectively suppressed melt-back of InP substrates into the melt during the initial stage of growth. It was observed that the quality of GaAs layers also improved substantially when the substrates patterned with grating structure were used, as determined by the (400) double crystal X-ray diffraction. The transmission electron microscopy observation indicated t.hat the misfit dislocations interact with each other at the grating region, resulting in a lower dislocation density in the upper GaAs layer.

  • PDF