• 제목/요약/키워드: Cooling Rate

검색결과 2,135건 처리시간 0.03초

ZPCCY계 바리스터 세라믹스의 DC 가속열화 특성에 미치는 냉각속도의 영향 (Effect of Cooling Rate on DC Accelerated Aging Characteristics of ZPCCY-Based Varistor Ceramics)

  • 남춘우;김향숙
    • 한국전기전자재료학회논문지
    • /
    • 제15권9호
    • /
    • pp.776-782
    • /
    • 2002
  • The microstructure, V-Ι characteristics, and stability of ZnO-P $r_{6}$ $O_{11}$ CoO-C $r_2$ $O_3$- $Y_2$ $O_3$-based varistor ceramics were investigated with cooling rate in the range of 2~8$^{\circ}C$/min. The cooling rate relatively weakly affected the microstructure, the varistor voltage, and the leakage current in the V-Ι characteristics. But the nonlinear exponent relatively strongly affected by cooling rate. The cooling rate also greatly affected the stability of V-Ιand dielectric characteristics for DC accelerated aging stress. On the whole, the varistors cooled with 4$^{\circ}C$/fin exhibited the highest performance in the densification, nonlinearity, and stability. Especially, they exhibited a high stability, in which the variation rate of the varistor voltage( $V_{1㎃}$), the nonlinear exponent($\alpha$), and the dissipation factor(tan $\delta$) is -1.4%, -4.9%, and +60.0%, respectively, under DC accelerated aging stress such as 0.95 $V_{1㎃}$15$0^{\circ}C$/12 h)

자동차용 엔진 냉각시스템의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Automotive Engine Cooling Control System)

  • 박경석;원종필;정동화
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1183-1194
    • /
    • 1998
  • This paper describes a theoretical model developed for analyzing the heat transfer of automotive cooling systems. From the model, heat transfer rate of automotive cooling systems can be predicted, providing useful information at the early stages of the design and development. The aim of the study is to develop a simulation program for automotive cooling system analysis and a performance analysis program for analyzing heat exchanger. Heat release rate from combustion gas to coolant through cylinder wall in engine cylinder was analyzed by using a two zone combustion model. This paper studied how cooling condition would affect engine heat release rate and measured temperature distribution of coolant in water jacket.

고체입자의 높은 연소율을 갖기 위해 고안된 로켓 엔진 기반 소각로의 냉각 해석 (A Numerical Study on Cooling Characteristics of a Rocket-engine-based Incinerator Devised for High Burning Rate of Solid Particles)

  • 손진우;손채훈
    • 한국추진공학회지
    • /
    • 제20권2호
    • /
    • pp.1-10
    • /
    • 2016
  • 고성능 고체 입자 연소를 위해 제안된, 로켓 엔진 기술이 접목된 연소실이 기존 연구를 통해 제시되었고, 본 연구에서는 연소실 벽면의 냉각해석을 수행하였다. 실제 연소실 제작에 앞서 연소율과 함께 냉각성능을 평가하기 위한 수치해석을 수행하였다. 연소실 벽면을 냉각하는 방식중 수냉각 방법을 적용하였고, 연소해석을 수행하여 선정한 냉각유량의 적정성을 검증하였다. 그리고 수냉각과 병행하여 공기 막냉각 방법을 이용한 복합냉각 방식을 적용한 수치해석 연구를 수행하였다. 해석 결과, 공기 막냉각만을 적용한 방식보다 막냉각과 수냉각을 복합적으로 적용한 냉각 방식이 더 우수한 냉각성능을 보였으며, 적용 가능한 범위의 냉각 유량을 산출하였다.

자동차 엔진냉각계의 해석 프로그램의 개발 (Development of Simulation Program of Automotive Engine Cooling System)

  • 배석정;이정희;최영기
    • 설비공학논문집
    • /
    • 제15권11호
    • /
    • pp.943-956
    • /
    • 2003
  • A numerical program has been developed for the simulation of automotive engine cooling system. The program determines the mass flow rate of engine coolant circulating the engine cooling system and radiator cooling air when the engine speed is adopted by appropriate empirical correlation. The program used the method of thermal balance at individual element through the model for radiator component in radiator analysis. This study has developed the program that predicts the coolant mass flow rate, inlet and outlet temperatures of each component in the engine cooling system (engine, transmission, radiator and oil cooler) in its state of thermal equilibrium. This study also combined the individual programs and united into the total performance analysis program of the engine cooling system operating at a constant vehicle speed. An air conditioner system is also included in this engine cooling system so that the condenser of the air conditioner faces the radiator. The effect of air conditioner to the cooling performance, e.g., radiator inlet temperature, of the radiator and engine system was examined. This study could make standards of design of radiator capacity using heat rejection with respect to the mass flow rate of cooling air. This study is intended to predict the performance of each component at design step or to simulate the system when specification of the component is modified, and to analyze the performance of the total vehicle engine cooling system.

단조품의 등온 어닐링에 따른 미세조직 변화 (The Effect of Isothermal Annealing on Microstructure of Forged Parts)

  • 김동배;이종훈
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.303-308
    • /
    • 2000
  • The ring gears of automobile parts are manufactured generally process chart of which is as follows : forging ${\rightarrow}$ annealing or normalizing ${\rightarrow}$ rough machining ${\rightarrow}$ hardening(Quenching-Tempering or carburizing process) ${\rightarrow}$ finish machining. Isothermal annealing process after forging is most effective in the side of improvment of machinability. On this study we selected two kinds of steel;SCM415, SCM435 of most universal and investigated microstructures to find out most suitable condition of heat treatment in proportion continuous cooling and isothermal annealing. As the cooling rate is $5^{\circ}C$ per minute in continuous cooling process, martensite and bainite are coexisted with ferrite and pearlite in SCM435 steel. If the cooling rate is slower than $5^{\circ}C$ per minute, microstructure were only ferrite and pearlite but formation of band structure can't be avoid. On the other hand, microstructure is only ferrite and pearlite regardless of cooling rate because carbon content of SCM415 steel is low. Moreover formation of band structure isn't exposed by faster cooling rate. Most optimal temperature of the isothermal annealing is from $650^{\circ}C$ to $680^{\circ}C$ in SCM435 steel. When holding time is 60 minute with $650^{\circ}C$, the identical ferrite and pearlite microstructures can be obtained.

  • PDF

SCM440강의 구상화 어닐링조건 최적화 연구 (Optimization of Spheroidizing Annealing Conditions in SCM440 Steel)

  • 정우창
    • 열처리공학회지
    • /
    • 제19권5호
    • /
    • pp.270-279
    • /
    • 2006
  • The effects of eight types of spheroidizing annealing conditions including annealing temperature, annealing time, cooling rate, and furnace atmosphere on the microstructure and hardeness were determined in SCM440 steel which has been widely used for automotive parts. The well-spheroidized structure and minimum hardness were obtained when the steel was heat-treated at $770^{\circ}C$ for 6 hours, cooled to $720^{\circ}C$ at a cooling rate of $24^{\circ}C/h$, and then kept for 7 hours at the $720^{\circ}C$ followed by air cooling. In order to increase the productivity and to save the manufacturing cost, it is desirable to apply a faster cooling rate to the spheroidizing annealing. It was found that a cooling rate of $100^{\circ}C/hr$ was the fastest cooling rate applicable to the SCM440 steel among the four cooling rates used in this study. The microstructure consisted of ferrite and very fine spheroidized cementite when the steel was annealed for 13 hours at $720^{\circ}C$ below $A_{C1}$ temperature. This was caused by the short annealing time and the retarding effect of Cr and Mo on both the dissolution of pearlite to cementite and coarsening of spheroidized cementite. The steel heat treated in air showed the decarburized layer of about $125{\mu}m$ in thickness at the surface.

알루미늄 합금 주물의 냉각 속도에 따른 기계적 성질 예측 (Effect of Cooling Rate on the Prediction of Mechanical Properties of Al Alloys)

  • 동권식;조인성;황호영
    • 한국주조공학회지
    • /
    • 제32권5호
    • /
    • pp.225-230
    • /
    • 2012
  • In this study, a more practical and simulation approach which can predict the mechanical properties of aluminum alloys is proposed. First, cooling rate, micro-structure, and mechanical properties of casting product were measured through casting experiment. The relation between cooling rate and SDAS decrease exponentially and the linearly decreasing relation exist between SDAS and mechanical properties. Then, the cooling rate was calculated by casting process simulation and the mechanical properties were predicted by using the relations that were derived through experiment. Experimentally measured mechanical properties and predicted values by simulation were in the range of relatively small difference. The mechanical properties of various Al alloys are expected to be predicted by the casting process simulation before actual casting.

WC-Co/Cu/SM45C강접합에 미세조직 및 접합강도에 미치는 냉각속도의 영향 (Effects of cooling rate on Microstructure and Bond Strength in WC-Co/Cu/SM45C steel joint)

  • 정승부;양훈모
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.104-111
    • /
    • 1999
  • The interfacial microstructure and bond strength were examined for WC-Co/Cu/SM45C steel join using a nickel-plated copper in vacuum at 1323K for 0.6ks∼3.6ks. After bonding, microstructure in bonding interface was observed by OM(Optical Microscopy), SEM(Scanning Electron Microscopy) and EPMA(Eelectron Probe Micro Analyzer). The oil cooling was carried out at 353K, the cooling rate in air and furnace was 22K/s and 4.4K/s. respectively. It was found that dendritic widths increased with the content of cobalt and bonding times at 1323K. As a whole, bond strength values at the same bonding condition decreased in this order: WC-13wt.%Co/SM45Csteel. WC-8wt.%Co/SM45Csteel and WC-4wt.%Co/SM45Csteel. The bond strength of WC-13wt.%Co/S45C steel joint in oil cooling was 273MPa. This value was greatly higher than those of 125MPa in furnace cooling and 93MPa in air cooling at 1323K for 0.6ks. The bond strength values were found to be closely associated with the content of cobalt in WC-Co and cooling rate.

  • PDF

7075 및 7050 알루미늄 합금의 응고 거동 및 편석에 미치는 냉각 속도의 영향 (The Effect of Cooling Rate on the Solidification Behavior and Segregation of 7075 and 7050 Aluminum Alloys)

  • 최정윤;권영동;이주원;이진형
    • 한국주조공학회지
    • /
    • 제21권6호
    • /
    • pp.343-349
    • /
    • 2001
  • The effect of cooling rate on the solidification microstructure and segregation behavior of 7075 and 7050 aluminum alloy was investigated. Samples were solidified with cooling rates from 0.3 to $17^{\circ}K/sec$. Using the cooling curves of each sample, liquidus, eutectic and intermetallic reaction temperatures were estimated. The microstructures were characterized in terms of dendrite arm spacing and eutectic volume fraction. The segregation behavior of each alloying element of these alloys in various cooling rates was discussed.

  • PDF

냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가 (Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis)

  • 이상환;박승연;이상목;김명호
    • 한국주조공학회지
    • /
    • 제33권1호
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.