• Title/Summary/Keyword: Cooling Plate

Search Result 508, Processing Time 0.028 seconds

Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface (확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구)

  • Lee, Min-Su;Chang, Young-Soo;Lee, Dae-Young
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

Measurement of Heat Transfer Coefficient of Magnesium Alloy and Temperature Change of Roll using Heat Transfer Solidification Analysis Method (전열응고해석법을 이용한 마그네슘합금의 열전달계수 및 롤의 온도변화 측정)

  • Han, Chang-Suk;Lee, Chan-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.391-395
    • /
    • 2022
  • Research is being actively conducted on the continuous thin plate casting method, which is used to manufacture magnesium alloy plate for plastic processing. This study applied a heat transfer solidification analysis method to the melt drag process. The heat transfer coefficient between the molten magnesium alloy metal and the roll in the thin plate manufacturing process using the melt drag method has not been clearly established until now, and the results were used to determine the temperature change. The estimated heat transfer coefficient for a roll speed of 30 m/min was 1.33 × 105 W/m2·K, which was very large compared to the heat transfer coefficient used in the solidification analysis of general aluminum castings. The heat transfer coefficient between the molten metal and the roll estimated in the range of the roll speed of 5 to 90 m/min was 1.42 × 105 to 8.95 × 104 W/m2·K. The cooling rate was calculated using a method based on the results of deriving the temperature change of the molten metal and the roll, using the estimated heat transfer coefficient. The DAS was estimated from the relationship between the cooling rate and DAS, and compared with the experimental value. When the magnesium alloy is manufactured by the melt drag method, the cooling rate of the thin plate is in the range of about 1.4 × 103 to 1.0 × 104 K/s.

Design and Analysis of Reinforced Concrete Hyperbolic Cooling (철근콘크리트 쌍곡냉각탑의 설계 및 해석)

  • 장현옥;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.501-506
    • /
    • 2000
  • An iterative numerical computational algorithm is presented to design a plate or shell element subjected to membrane and flexural forces. Based on equilibrium consideration, equations for capacities of top and bottom reinforcements in two orthogonal directions have been derived. The amount of reinforcement is determined locally, i.e., for each sampling point, from the equilibrium between applied and internal forces. Based on nonlinear analyses performed in a hyperbolic cooling tower, the analytically calculated ultimate load exceeded the design ultimate load from 50% to 55% for an analysis with relatively low to high tension stiffening, cases $\gamma$=10 and 15. For these cases, the design method gives a lower bound on the ultimate load with respect to Lower bound theorem, This shows the adequacy of th current practice at least for this cooling tower shell case studied. To generalize the conclusion more designs - analyses should be reformed with different shell configurations.

  • PDF

Optimized Design of a Cold Plate Heat Sink using FEM and Optimization (유한요소법과 최적설계기법을 활용한 히트싱크 콜드 플레이트 최적 설계)

  • Hong, S.;Seo, H.;Kim, J.;Sim, J.;Hwang, J.
    • Transactions of Materials Processing
    • /
    • v.23 no.7
    • /
    • pp.419-424
    • /
    • 2014
  • In order to improve efficiency, an outdoor unit using a refrigerant cooling method is designed into many air conditioner systems. The heat exchanger is composed of a Cu tube and an plate. The optimal design for the cold plate is very important because the efficiency of the heat transfer depends on the contact area between the Cu tube and the cold plate. The current study focused on the design of the cold plate to obtain a uniform contact between the Cu tube and the cold plate. Both FE(finite element) analysis and optimization were used in the design. The contact area between the tube and plate was predicted and improved by 16% through the press forming simulations. The springback after press forming was also reduced when the optimized design parameters were used. To verify the validity of the optimal cold plate design, a verification test was conducted. As a result, the performance of the heat exchanger improved by 34% when compared to benchmarked products.

Heat Transfer Characteristics on Effusion Plate in Impingement/Effusion Cooling for Combustor (연소실 냉각을 위한 충돌제트/유출냉각기법에서 유출판에서의 열전달특성)

  • Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.435-442
    • /
    • 2000
  • The present study is conducted to investigate the local heat/mass transfer characteristics for flow through perforated plates. A naphthalene sublimation method is employed to determine the local heat/mass transfer coefficients on the effusion plate. Two parallel perforated plates are arranged for the two different ways: staggered and shifted in one direction. The experiments are conducted for hole pitch-to-diameter ratios of 6.0, for gap distance between the perforated plates of 0.33 to 10 hole diameters, and for Reynolds numbers of 5,000 to 12,000. The result shows that the high transfer region is formed at stagnation region and at the mid-line of the adjacent impinging jets due to secondary vortices and flow acceleration to the effusion hole. For flows through the perforated plates, the mass transfer rates on the surface of the effusion plate are about six to ten times higher than for effusion cooling alone (single perforated plate). More uniform and higher heat/mass transfer characteristic is obtained in overall region with small gap between two perforated plates.

Ice Slurry Formation of a Solution in a Pressurized Plate Heat Exchanger (가압 판형 열교환기에 의한 수용액의 아이스슬러리 생성)

  • Lee Dong-Gyu;Kim Byung-Seon;Peck Jong-Hyeon;Hong Hi-Ki;Kang Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.596-602
    • /
    • 2006
  • Ice adhesion and blockage problems have been issued in continuous ice slurry making process. So we composed continuous ice slurry making device using a commercial small plate heat exchanger (PHX), and investigated character of ice formation. An experiment of ice formation was peformed with an aqueous solution of ethylene glycol 7 mass%. In the experiment, the effect of the pressurization on ice slurry formation during the cooling process was investigated. The pressurization test for the aqueous solution was performed by setting valves at the PHX inlet and outlet. At the results, the time of continuous ice formation increased as the pressure of the plate heat exchanger increased for cooling temperature of $-5^{\circ}C$. Also continuous ice formation at the cooling temperature of $-7^{\circ}C$ showed a possibility. It was found that the pressurization may contribute to suppress the dissolution of supercooled aqueous solution in the PHX.

Effect of Anti-Vortex Hole Angle on the Flat Plate Film Cooling Effectiveness (반와류 홀의 각도가 평판의 막냉각 효율에 미치는 영향 연구)

  • Park, Soon Sang;Park, Jung Shin;Lee, Sang Hoon;Moon, Young Gi;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.5
    • /
    • pp.5-10
    • /
    • 2014
  • In this paper, the experimental study was carried to investigate the effect of angle of the anti-vortex holes on the film cooling effectiveness on a flat plate. The pressure sensitive paint technique was applied to measure the film cooling effectiveness. Two anti-vortex hole angles of $0^{\circ}$ and $15^{\circ}$ with respect to the primary hole were considered, and the simple cylindrical hole case was also tested. The blowing ratio based on the cylindrical hole was 0.5 and the same flow rate was kept for all anti-vortex hole cases. Results showed that the film cooling effectiveness for the anti-vortex hole cases were much higher than that of the cylindrical case. Among the anti-vortex hole cases, $15^{\circ}$ angle anti-vortex hole case showed higher film cooling effectiveness than that by the $0^{\circ}$ angle anti-vortex hole case.

Numerical Simulation on Cooling Plates in a Fuel Cell (연료전지 냉각판의 냉각 특성에 대한 수치해석적 연구)

  • Kim, Yoon-Ho;Lee, Yong-Taek;Lee, Kyu-Jung;Kim, Yong-Chan;Choi, Jong-Min;Ko, Jang-Myoun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.86-93
    • /
    • 2007
  • The PEM (polymer electrolyte membrane) fuel cell is one of the promising fuel cell systems as a new small power generating device for automobiles and buildings. The optimal design of cooling plates installed between MEA (membrane electrode assembly) is very important to achieve high performance and reliability of the PEMFC because it is very sensitive to temperature variations. In this study, six types of cooling plate models for the PEMFC including basic serpentine and parallel shapes were designed and their cooling performances were analyzed by using three-dimensional fluid dynamics with commercial software. The model 3 designed by revising the basic serpentine model represented the best cooling performance among them in the aspect of uniformity of temperature distribution and thermal reliability, The serpentine models showed higher pressure drop than the parallel models due to a higher flow rate.

Influence of the Supercooling Degree and Cooling Rate on a Continuous Ice Formation by a Supercooled Aqueous Solution in Flow Using a Plate Heat Exchanger (판형 열교환기를 이용한 과냉각수용액에서 유동과냉도 및 냉각속도가 연속제빙에 미치는 영향)

  • Lee, Dong-Gyu;Peck, Jong-Hyeon;Hong, Hi-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.647-653
    • /
    • 2007
  • In dynamic ice storage system(DISS), ice slurry is formed not only from solution freezing by mechanical removing parts but also supercooled solution. However, in order to perform continuous ice formation in the system without mechanical moving parts, supercooled aqueous solution should be formed stable through cooling heat exchanger and be dissolved uniformly in storage tank. In previous study, the time of ice slurry increased as the pressure of the cooling heat exchanger(PHX) increased. In this study, a cooling experiment of an ethylene glycol 7mass% solution was performed with various inlet temperature of the PHX, which has constant brine inlet temperature of $-7^{\circ}C$. The temperature in the storage tank maintained to freezing point of the solution. At results, the time of ice slurry formation increased as the supercooling degree decreased and the cooling rate increased.

Prediction of Plate Deformation Considering Film Boiling in Water Cooling Process after Line Heating (선상가열시 수냉이 유발하는 막비등 현상을 고려한 판의 변형 예측)

  • Ha, Yun-Sok;Kim, Jung-Soo;Jang, Chang-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.472-478
    • /
    • 2005
  • From a rapid cooling to a slow cooling in the actual cooling process in shipyards, the phase of steel becomes martensite, bainite, ferrite, and pearlite. In order to simulate the cooling process, heat transfer analysis was performed considering the effects of impinging water jet, film boiling, and radiation. From above simulation it is possible to find the cooling speed at the inherent strain region and volume percentage of all phases in that region. By the suggested method based on the precise material properties calculated from volume percentage of all phases, it will be possible to predict the plate deformations by line heating more precisely. It is verified by comparing with some experimental results that the present method is very effective and efficient.