• Title/Summary/Keyword: Cooling Effect

Search Result 2,362, Processing Time 0.034 seconds

Effect of Design Parameters on the Cooling Performance of Cooling Liner (냉각라이너의 설계변수가 냉각성능에 미치는 영향)

  • Jeong, Hae-Seung;Youn, Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.988-991
    • /
    • 2011
  • This study aims to analyze the effects of design parameters of the slotted cooling liner for air-breathing propulsion system. The three kinds of design parameters of the slotted cooling liner were selected and were investigated effect on the cooling performance of the slotted cooling liner. In this paper calculation results for inner wall temperature of cooling liner from heat transfer calculations were presented.

  • PDF

Conceptual Development of a Subminiature Cool Pad Applying Sorption Cooling Effect (흡습 냉각 원리를 이용한 소형 냉각 패드에 관한 연구)

  • 황용신;이대영;김우승
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • This paper describes conceptual development and idea-verification of a sub-miniature portable cooler which dose not necessitate any pre-cooling nor any external energy supply. The basic principle of the cooling mechanism is the vaporization of water and sub-sequent cooling due to the evaporative latent heat loss. In this work, the vaporization of the water is stimulated by desiccant material to improve the cooling effect. The evaporative cooling caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. In addition, the portable cooler is fabricated in the shape of a thin pad, and its cooling characteristics are tested and compared with the analytic results.

Experimental Study of Film Cooling Behaviors at a Cylindrical Leading Edge

  • Kim S. M.;Kim Youn-J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.81-84
    • /
    • 2002
  • Dispersion of coolant jets in a film cooling flow field is the result of a highly complex interaction between the film cooling jets and the mainstream. In order to investigate the effect of blowing ratios on the film cooling of turbine blade, cylindrical body model was used. Mainstream Reynolds number based on the cylinder diameter was $7.1\;\times\;10^4$. The free-stream turbulence intensity kept at $5.0\%$ by using turbulence grid. The effect of coolant flow rates was studied for blowing ratios of 0.9, 1.3 and 1.6, respectively. The temperature distribution of the cylindrical model surface is visualized by infrared thermography (IRT). Results show that the film-cooling performance may be significantly improved by controlling the blowing ratio. As blowing ratio increases, the adiabatic film cooling effectiveness is more broadly distributed and the area protected by coolant increases. The mass flow rate of the coolant through the first-row holes is less than that through the second-row holes due to the pressure variation around the cylinder surface.

  • PDF

Optimization of Cooling Conditions by Supplying Cutting Oil Applied with Mist Nozzle to Minimize Tapping Processing Temperature (Tapping 가공 온도 최소화를 위해 미스트 노즐 적용 절삭유 공급에 따른 냉각조건 최적화)

  • Oh, Chang-hyouk;Kim, Young-Shin;Jeon, Euy-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.98-104
    • /
    • 2022
  • When processing parts, the cutting oil can improve the cooling performance of the workpiece and tool to increase the precision of the workpiece or extend the life of the tool and facilitate chip extraction. Since such cutting oil has a harmful effect on the environment and the human body due to additives such as sulfur, research on a minimum lubrication supply method using an eco-friendly oil is recently underway. The minimum lubrication supply method minimizes the amount of cutting oil used during processing and processes it, which can reduce the amount of cutting oil used, but has a problem in that cooling performance efficiency is poor. Therefore, this study conducted a study on mist cooling of lubricants to reduce the amount of cutting oil used and maximize the cooling effect of processing heat generated during tapping processing. Spray pressure, processing speed, direction, and lubricant spray amount, which are considered to have an effect on cooling performance, were set as process conditions, and the effect on temperature was analyzed by performing an experiment using the box benquin method among experiments were analyzed. Through the experimental analysis results, the optimal conditions for mist and processing that maximize the cooling effect were derived, and the validity of the results derived through additional experiments was verified. In the case of processing by applying the mist lubrication method verified through this study, it is considered that high-precision processing is possible by improving the cooling effect.

Thermal Analysis and Optimum Design of Water-Cooled, Series-Flow Type, Double-Effect Absorption Heat Pump (수냉형 직렬방식 2중효용 흡수식 냉방기의 열해석과 최적 설계)

  • Oh, M.D.;Kim, Y.L.;Kim, S.C.;Kim, Y.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.332-341
    • /
    • 1992
  • An absorption heat pump cycle has been modeled and simulated to analyze the system performance of water-cooled, series-flow, double-effect absorption heat pump, which can be applied to a direct gas fired cooling system with the medium range of cooling capacity (15RT level). Effect of absorption cooling system parameters, such as concentration difference, inlet temperature of cooling water, 1st generator temperature, leaving temperature differences of condenser and evaporator and efficiency of solution heat exchanger, has been investigated in the view of system cooling performance.

  • PDF

A Preliminary Analysis of the Impact of Urban Green Spaces on the Urban Heat Island Effect Using a Temperature Map

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.675-680
    • /
    • 2010
  • Temperature is one of the main issues in climate change, and the urban heat island effect in highly developed urban areas is an important issue that we need to deal with. This study analyzed the extent of the cooling effects of urban green spaces. The study used a surface temperature map of Seoul. It found that the cooling effects of green space was observed within limited distances, although it varied a little depending on the parks investigated. The cooling effect distance ranged from 240m to 360m, averaging about 300m. It also found the size of an urban green space does not make much difference in cooling the surrounding areas. Although further investigation with diverse urban areas should be conducted on this matter, the results did imply that many small green spaces in the neighborhood are more effective than a single big green space in mitigating the heat island effects of cities.

Temperature Control using Peltier Element by PWM Method

  • Pang, Du-Yeol;Jeon, Won-Suk;Choi, Kwang-Hoon;Kwon, Tae-Kyu;Kim, Nam-Gyun;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1400-1404
    • /
    • 2005
  • This paper presents the temperature control of aluminum plate by using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is charged to Peltier element, it absorbs heat from low temperature side and emits heat to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with current control and operating cooling fan only while cooling duration. Operating cooling fan only while cooling duration is proper to get more rapid heating and cooling duration. As a result of experiment, it takes about 100sec period to repeating temperature between $35^{\circ}C$ and $70^{\circ}C$ and about 80sec from $40^{\circ}C$ to $70^{\circ}C$ in ambient air temperature $25^{\circ}C$ and while operating cooling fan only in cooling duration. Future aim is to apply this temperature control method in actuating SMHA(special metal hydride actuator) which is applicable in Siver project acting in low frequency range by using Peltier element for heating and cooling.

  • PDF

Effects of Experimental Variables on the Measurement $T_{cv}$ of Crystalline slags (결정슬래그의 $T_{cv}$ 측정 시 실험변수에 따른 영향)

  • Kim, Yu-Na;Oh, Myong-Sook S.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.254-257
    • /
    • 2008
  • For crystalline slags, of which the viscosity rapidly increases at $T_{cv}$ due to the formation of crystalline phases, the Tcv is affected by measurement conditions. In this study, we investigated the effect of cooling rate, and alumina dissolution on the determination of $T_{cv}$. Using synthetic slag samples based on the composition of Alaska Usibelli slag, $T_{cv}$ were determined under a constant cooling rate of $2^{\circ}C$/min, and under rapid cooling with holding time to allow the slag to reach thermal and rheological equilibrium. The effect of alumina dissolution was investigated using platinum lined crucibles. The constant cooling resulted in lower $T_{cv}$ by $33^{\circ}C$ as compared to the equilibrium measurements. Under $2^{\circ}C$/min cooling, the blocking alumina dissolution resulted in lower $T_{cv}$ by $23^{\circ}C$. When the $T_{cv}$ was measured under $2^{\circ}C$/min cooling using an alumina crucible, therefore, the effects of a constant cooling is somewhat offset by the alumina dissolution effect, and bring the measured value closer to the true value.

  • PDF

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

A Study on Passive Cooling Strategies for Buildings in Hot Humid Region of Nepal

  • Manandhar, Rashmi;Yoon, Jongho
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.53-60
    • /
    • 2015
  • Increase in energy consumption in building is a big concern world over. In Nepal, energy crisis is a big issue but energy demand in buildings is barely even thought about. In the southern part of Nepal, where the weather is mostly hot during the year, cooling in buildings is very important. This is an initial study regarding building design strategies which focuses on cooling energy consumption in the building. It can be seen from the study that simple passive strategies can be applied in building design which can support in decreasing cooling load. Different passive cooling strategies like orientation, building size, thermal mass, window design and two direct cooling strategies have been investigated in this study. Direct cooling strategies like shading and natural cooling helps in passive cooling. Different desing strategies have different impact on the cooling energy requirement and the study shows that thermo physical property of building materials has the maximum effect on the energy consumption of the building. Each design strategy creates and average of 20% decrease in energy consumption, whereas the thermal conductivity can have as much as 10 times more effect on the energy consumption than other design strategies.