• 제목/요약/키워드: Cooling Duct

검색결과 119건 처리시간 0.035초

H종 주상용 몰드 변압기의 덕크구조에 따른 열해석 특성 (Surface Ageing Property of Polymer Insulator for Transmission line with Forest Fire Test)

  • 조한구;김광용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.111-111
    • /
    • 2010
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. In this paper, the temperature distribution and thermal stress analysis of H class 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF

쐐기형 요철이 설치된 사각덕트에서의 열전달 및 압력강하 특성 (Heat/Mass Transfer and Pressure Drop of Square Duct with V-shape Ribs)

  • 최청;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.280-287
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the rib-roughened cooling passage of the gas turbine blades. A square duct with rectangular ribs is used and $\wedge-$ and V-shape ribs with $60^{\circ}$ attack angle are installed on the test plate surfaces. Naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vortices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. A square duct with $\wedge$ and V-shape ribs has two pairs of secondary flow because of the rib arrangement. So, the duct has complex heat/mass transfer distribution. The average heat/mass transfer coefficient and pressure drop of $\wedge-$ and V-shape ribs are higher than those with $90^{\circ}$ and $60^{\circ}$ attack angles. The average heat/mass transfer coefficient on the $\wedge-shape$ ribs is higher than that on the V-shape ribs. Also, the uniformity of heat/mass transfer coefficient on discrete ribs is higher than that on continuous rib.

  • PDF

에너지 절약용 냉방사이클 (Cooling Cycle for Energy Saving)

  • 이흥주;김용구
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.116-127
    • /
    • 1989
  • Research on reheating cooling cycle and its practical application have been made to prevent unequalized distribution of temperature and humidity of room due to lack of supply air volume and dewdrops on supply diffusers to be taken place as a result of lower temperature of supply air than that of dew point of room air in cooling cycle of constant air volume, single duct, single zone and draw-through fan type. In view of the fact that human body is insensitive to humidity, it is possible not only to construct the complete non-reheating cooling cycle by increasing the humidity point allowable with the deduction of occupant's sense of pleasantness minimizing, but also to get cooling cycle decreasing the reheating quantity if the humidity exceeds the point allowable. In addition, it is possible to save maximum 8% in electric energy for cooling in cooling system by constructing non-reheating cooling cycle instead of reheating cooling cycle and by increasing the relative humidity of room from 50% to 65% in case efficiency and air pressure of cooling system are low. It is also possible to get an optimum cooling cycle by determining the room humidity in consideration of pleasantness of occupants and conservation rate of electric energy if the cooling capacity, efficiency and total pressure of cooling equipment are fixed.

  • PDF

Application of Cathodic Protection on Metallic Structure in Extremely Acidic Fluids

  • Chang, H.Y.;Yoo, Y.R.;Jin, T.E.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • 제4권4호
    • /
    • pp.140-146
    • /
    • 2005
  • Fossil fired power plant produces the electric energy by using a thermal energy by the combustion of fossil fuels as like oil, gas and coal. The exhausted flue gas by the combustion of oil etc. contains usually many contaminated species, and especially sulfur-content has been controlled strictly and then FGD (Flue Gas Desulfurization) facility should be installed in every fossil fired power plant. To minimize the content of contaminations in final exhaust gas, high corrosive environment including sulfuric acid (it was formed during the process which $SO_2$ gas combined with $Mg(OH)_2$ solution) can be formed in cooling zone of FGD facility and severe corrosion damage is reported in this zone. These conditions are formed when duct materials are immersed in fluid that flows on the duct floors or when exhausted gas is condensed into thin layered medium and contacts with materials of the duct walls and roofs. These environments make troublesome corrosion and air pollution problems that are occurred from the leakage of those ducts. The frequent shut down and repairing works of the FGD systems also demand costs and low efficiencies of those facilities. In general, high corrosion resistant materials have been used to solve this problem. However, corrosion problems have severely occurred in a cooling zone even though high corrosion resistant materials were used. In this work, a new technology has been proposed to solve the corrosion problem in the cooling zone of FGD facility. This electrochemical protection system contains cathodic protection method and protection by coating film, and remote monitoring-control system.

복합각도 요철을 가지는 사각 덕트 내의 열전달 및 압력강하 특성 (Characteristics of Heat/Mass Transfer and Pressure Drop in a Square Duct with Compound-Angled Rib Turbulaters)

  • 최청;이동호;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.325-333
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics inside the cooling passage of the gas-turbine blades. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. The square duct has compound-angled ribs with $60^{\circ},\;70^{\circ}$ and $90^{\circ}$ attack angles, which are installed on the test plate surfaces. a naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The ribs disturb the main flow resulting in the recirculation and secondary flows near the ribbed wall and the vertices near the side-wall. The local heat transfer and the secondary flow in the duct are changed largely according to the rib orientation. Therefore, geometry and arrangement of the ribs are important fur the advantageous cooling performance. The angled ribs increase the heat transfer discrepancy between the wall and center regions because of the interaction of the secondary flows. The average heat/mass transfer coefficient and pressure drop of the ribs with the $60^{\circ}$ $-90^{\circ}$ compound-angle are higher than those with the $60^{\circ}$ attack angle. Also, the thermal efficiency of the compound-angled rib is higher than that with the $60^{\circ}$ attack angle. The uniformity of heat/mass transfer coefficient on the cross ribs may is higher than that on the parallel ribs array.

  • PDF

물 분무를 이용한 연소가스 냉각 1차원 해석 (1-D Analysis for Water Spray Cooling of Exhaust Gas in Combustor Test Facility)

  • 임주현;김명호;김용련
    • 한국추진공학회지
    • /
    • 제19권1호
    • /
    • pp.61-67
    • /
    • 2015
  • 연소기 시험 장치의 구축 시 고온의 연소 가스의 냉각은 중요한 설계요구조건이다. 물 분무(Water spray) 냉각 방식은 증발 과정에서 물의 잠열을 이용하므로, 효과적인 연소 가스 냉각이 가능하다. 본 연구에서는 연소기 시험 설비 구축 과정의 일환으로, 물 분무를 이용한 연소 가스의 냉각을 이해하기 위하여 연속방정식, 에너지 보존식과 포화 증기의 압력-온도 관계식을 이용한 1차원 해석을 수행하였다. 연소기 시험 장치에서 배출되는 고온, 고압의 연소 가스는 냉각수와의 혼합과정에서 배출가스의 온도가 낮아지며, 분무된 물의 일부는 기화하여 연소가스와 함께 배출되고, 일부는 다시 응축 되어 집수조로 모인다. 냉각수는 연소 가스의 온도를 낮춰주는 동시에, 증발된 증기는 연소기 내부의 압력을 증가시키므로 1차원 해석에서 증기의 압력-온도 관계식을 고려하여 해석을 수행하였다. 1차원 해석으로부터 연소가스의 적절한 냉각과 배기 덕트 내부의 압력의 지나친 상승을 피하기 위한 최적의 물 분무량을 확인하였으며, 물 분무 냉각 방식에 대한 물리적 이해를 얻을 수 있었다.

쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향 (Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs)

  • 이동현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

화염유도로 냉각수 분사방식에 따른 로켓 플룸의 CO와 NO 반응의 수치해석 (Numerical Study on the CO and NO of Rocket Plume as the Type of Water Injection in the Flame Guiding Duct)

  • 김성룡;김승한;한영민
    • 한국추진공학회지
    • /
    • 제19권3호
    • /
    • pp.39-46
    • /
    • 2015
  • 로켓 플룸에 냉각수 분사하여 일산화탄소 재연소와 질소산화물 생성 과정을 포함한 유동장의 변화를 전산 해석하였다. 연구 결과 플룸에 분사된 냉각수는 질소산화물 생성을 억제하고 CO 재연소를 촉진시켰다. 그러나 냉각수 분사 방식에 따라 그 효과는 달랐다. 냉각수를 플룸의 측면에서 분사할 경우 질소산화물 생성은 크게 억제하였지만, 일산화탄소 재연소는 약간 증가하였다. 반면에 냉각수를 플룸 중심과 측면에서 동시에 분사하는 경우 질소산화물 생성의 억제와 일산화탄소 재연소를 크게 촉진시켰다.

냉동 컨테이너 적재부의 배관 형상에 따른 환기성능 실험 (Experimental analysis of ventilation performance varying with duct shapes inside reefer container hold)

  • 박일석;박상민;이동조;설신수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1710-1714
    • /
    • 2004
  • The analysis of ventilation performance varying with duct shapes in reefer container of scale-model has studied experimentally. Most container ships have ventilation system of which ducts extended to the bottom for the purpose of efficient exhausting of condensing heat from hold. However, the size of ducts is so over-long that it causes manufacturing troubles. In this study, for various types of duct, flow visualization using smoke and normalized temperature analysis are presented. Finally, the cooling performance are compared respectively.

  • PDF

종횡비가 큰 사각 덕트내 난류 유동의 대류 열전달 증진 기술에 대한 연구 (TURBULENCE HEAT TRANSFER ENHANCEMENT TECHNIQUE FOR SQUARE DUCT WITH HIGH ASPECT RATIO)

  • 이찬용;신승원;정하승;박승호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.305-307
    • /
    • 2010
  • In this study, we develop a method to achieve heat transfer enhancement inside a square duct with high aspect ratio without changing any inner structures. Especially, a method to lower the possible maximum temperature is suggested if constant heat flux is provided to single surface of square duct. Knowing the fact that heat transfer rate is inversely proportional to flow area, we proposed tapered channel concept which uses narrower gap toward the flow exit where the maximum temperature is expected. To maintain equivalent power consumption, inlet section has been enlarged. To verify the proposed concept, experimental tests have been performed.

  • PDF