• Title/Summary/Keyword: Cooling Condition

Search Result 1,247, Processing Time 0.029 seconds

An Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling (원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 실험적 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Kim, Hwan-Yeol;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1897-1902
    • /
    • 2003
  • An 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APRI400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper exit slot area and configuration. And non-heating experiments have also been performed and discussed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition.

  • PDF

Temperature Distribution of a Low Temperature Heat Pipe with Multiple Heaters for Electronic Cooling

  • Noh, Hong-Koo;Song, Kyu-Sub
    • ETRI Journal
    • /
    • v.20 no.4
    • /
    • pp.380-394
    • /
    • 1998
  • A numerical study has been performed to predict the characteristics on the transient operation of the heat pipe with multiple heaters for electronic cooling. The model of the heat pipe was composed of the evaporator section with four heaters, insulated transport section, and the condensor section with a conductor which is cooled with uniform heat flux condition to surrounding. The governing equations and the boundary conditions were solved by the generalized PHOENICS computational code employing the finite volume method. Two test cases are investigated in present study; Case 1 indicates that the 1st and 2nd heaters among four heating sources are heated off, while the 3rd and 4th heaters are heated on. Case 2 is the inverse situation switched from heating location of Case 1. The results show that the transient time to reach the steady state is shorter for Case 1 than for Case 2. Especially, the temperature difference of the heater during switching operation is relatively small compared to the maximum allowable operating temperature difference in electronic system. Hence, it is predicted that the heat pipe in present study operates with thermally good reliability even for switching the heaters.

  • PDF

Effects of Refrigerant Charge Amount on the Cooling Performance of a Transcritical $CO_{2}$ Cycle (냉매충전량이 초임계 이산화탄소 사이클의 냉방성능에 미치는 영향에 대한 연구)

  • Cho Honghyun;Ryu Changgi;Kim Yongchan;Sim Yunhee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.410-417
    • /
    • 2005
  • The cooling performance of a transcritical $CO_{2}$ cycle varies significantly with a variation of refrigerant charge amount. In this study, the performance of the $CO_{2}$ system was measured and analyzed by varying refrigerant charge amount at a standard test condition. Besides, the losses of the major components in the $CO_{2}$ system were estimated by evaluating entropy generation with refrigerant charge amount. The losses in the expansion device and the gascooler show the major portion of the total loss. For undercharging conditions, the expansion loss dominates the overall system performance, while the gascooler loss increases significantly with an increase of refrigerant charge amount.

Approximate Solution of Absorption Process in an Air-Cooled Vertical Plate Absorber (공냉식 수직평판형 흡수기의 흡수과정에 대한 근사해법)

  • Jeong, E.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.453-462
    • /
    • 1994
  • An unsteady quasi one-dimensional model of momentum, heat and mass transfer in a falling film of a vertical plate absorber which is cooled by air was developed using the integral method. Energy conservation of the absorber wall is considered in the model. The model can predict absorption rate, film thickness and mean velocity as well as concentration and temperature profiles. Predictions of steady state temperature and concentration profiles for LiBr/water system for constant wall temperature condition are in good agreement with the two-dimensional finite difference method solutions. Effects of operating conditions, such as convective heat transfer coefficient between the cooling air and the absorber wall, cooling air temperature and film thickness at inlet, on absorption rate of water vapor into LiBr/water solution were shown.

  • PDF

Energy Saving Effect of ERV(Energy Recovery ventilator) with Economizer Control in Residential Building (Economizer cycle control을 채용한 전열교환시스템의 에너지 절감효과 분석 -국내 공동주택을 대상으로-)

  • Park, Jae-Hyung;Kim, Joo-Wook;Song, Doo-Sam;Yoon, Ho-Young;Kim, Sung-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.679-684
    • /
    • 2009
  • ERV system has installed in almost newly constructed residential building in Korea. Heat recovery features of ERV can be possible to decrease the heating and cooling load caused by ventilation. However, in case of the outdoor condition is favorable to control the indoor air, the heat recovery function of ERV does more harm than good in term of cooling load. In this study, the ERV with economizer cycle control for residential building is suggested and the performance of the suggested system will be analyzed using TRNSYS.

  • PDF

EVALUATION OF PLANT OPERATIONAL STATES WITH THE CONSIDERATION OF LOOP STRUCTURES UNDER ACCIDENT CONDITIONS

  • MATSUOKA, TAKESHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • Nuclear power plants have logical loop structures in their system configuration. This paper explains the method to solve a loop structure in reliability analysis. As examples of loop structured systems, the reactor core isolation cooling system and high-pressure core injection system of a boiling water reactor are considered and analyzed under a station blackout accident condition. The analysis results show the important role of loop structures under severe accidents. For the evaluation of the safety of nuclear power plants, it is necessary to accurately evaluate a loop structure's reliability.

Early Hydration of Ticalcium Silicate(I) (Tricalcium Silicate의 초기수화반응(I))

  • 오희갑;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.5
    • /
    • pp.35-40
    • /
    • 1986
  • The early hydration of tri-calcium silicate $(C_3S)$ with different cooling conditions was studied by varing water/solid ratio and atmosphere. The cooling condition and water/solid ratio affected to the second peak of heat liberation but it had no correlation to the induction period. The $Ca^{2+}$ concentration in the aqueous solution was maximized at the starting point of the second peak of heat liberation but in the $CO_2$ exsistence the $Ca^{2+}$ concentration was low and $SiO_2$ con-centration was increased. The hydration rate of $C_3S$ was so accelerated that the induction period could not appear in the $CO_2$ exsistence.

  • PDF

RECOVERY OF FREOU-11 USED IN A PROCESSING SYSTEM OF TOBACCO EXPANSION (ABOUT COOLING AND COMPRESSION SYSTEM) (담배 팽화공정에 사용된 Freon-11의 회수 (냉각 및 압축 system에 관해서))

  • 김기환;유광근;주영석;최영현;김병구
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.2
    • /
    • pp.189-197
    • /
    • 1985
  • The purpose of this study is to improve the method and the apparatus for recovering freon-11 used in a process for increasing the filling capacity of tobacco. The first, the theoretical recovery rate of freon-11 was calculated from vapour pressure and thermodynamic properties of freon-11. The second, the usability of theoretical data was evaluated by the comparison between the theoretical data and the experimental data from the pilot plant. The result obtained under the present experiment condition was quite similar to the rate at 15kg/cm2 and 5$^{\circ}C$, but the theoretical data evaluated were 0.1 to 0.3% lower than the experimental data at 20 to 25kg/cm2 and 5$^{\circ}C$. The recovery rate of the cooling and the compression system was about 95% with freon-11 used in this system and that with freon-11 concentrate of waste gas was about 3 to 3.6% at 20 to 25kg/cm2 and 5$^{\circ}C$.

  • PDF

An experimental study on the dynamic characteristics of a residential air-conditioner with a R22 alternative refrigerant (R22 대체냉매 에어컨의 동적 특성에 대한 실험적 연구)

  • Kim, Man-Hoe
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.408-415
    • /
    • 1998
  • This study presents experimental results on the shut-down and start-up characteristics of a residential split-system air-conditioner with capillary tube, using R410A as a R22 alternative refrigerant. During shut-down, the transient characteristics are evaluated by measuring the high side and low side pressures and temperatures of the system. The dynamic behavior of the system after start-up is also investigated at the high temperature cooling test condition. All experiments are performed in psychrometric calorimeter. The cooling capacity, power consumption, dehumidification capacity and cycle characteristics after start-up are analyzed.

A study on the heat transfer of the turbocharged gasoline engine (터보과급 가솔린기관의 열전달에 관한 연구)

  • 최영돈;홍진관
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.69-82
    • /
    • 1988
  • Heat transfer experiment is carried out during the performance test of the 4-cylinder 4-stroke cycle turbo-charged gasoline engine. Cycle simulation employing the measured pressure in cylinder, the cooling water temperature and flow rate and others is carried out in order to calculate the gas temperature in cylinder. In this simulation combustion process was simulated by Annand's two zone model and suction, compression, and other processes are calculated completely. From this simulation, we can obtain not only the heat transfer coefficient but also the flame speed, turbulent burning velocity, flame factor and the boiling condition of cooling passage. The results are investigated with engine speed, equivalence ratio and spark advance.

  • PDF